Primer Selection and Design for Polymerase Chain Reaction

  • Wojciech Rychlik
Part of the Springer Protocols Handbooks book series (SPH)


One of the most important factors affecting the quality of polymerase chain reaction (PCR) is the choice of primers. Several rules should be observed when designing primers and, in general, the more DNA sequence information available, the better the chance of finding an “ideal” primer pair. Fortunately, not all primer selection criteria need be met in order to synthesize a clean, specific product, as the adjustment of PCR conditions (such as composition of the reaction mixture, temperature, and duration of PCR steps) may considerably improve the reaction specificity. Amplification of 200–400 bp DNA is the most efficient and, in these cases, one may design efficient primers simply by following a few simple rules described in this chapter. It is more difficult to choose primers for efficient amplification of longer DNA fragments, and use of an appropriate primer analysis software is worthwhile.


Polymerase Chain Reaction Polymerase Chain Reaction Primer Polymerase Chain Reaction Condition Duplex Formation Duplex Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Breslauer, K. J., Frank, R., Blocker, H., and Markey, L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.PubMedCrossRefGoogle Scholar
  2. 2.
    Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad Sci. USA 83, 9373–9377.PubMedCrossRefGoogle Scholar
  3. 3.
    Groebe, D. R. and Uhlenbeck, O. C. (1988) Characterization of RNA hairpin loop stability. Nucleic Acids Res. 16, 11,725–11,735.PubMedCrossRefGoogle Scholar
  4. 4.
    Rychlik, W., Spencer, W. J., and Rhoads, R. E. (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res. 18, 6409–6412.PubMedCrossRefGoogle Scholar
  5. 5.
    Rychlik, W. and Rhoads, R. E. (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee, C. C. and Caskey, C. T. (1990) CDNA cloning using degenerate primers, in PCR Protocols (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, New York, pp. 46–53.Google Scholar
  7. 7.
    Kwok, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda, L., Levenson, C., and Sninsky, J. J. (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 18, 999–1005.PubMedCrossRefGoogle Scholar
  8. 8.
    Eckert, K. A. and Kunkel, T. A. (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 18, 3739–3744.PubMedCrossRefGoogle Scholar
  9. 9.
    Petruska, J., Goodman, M. F., Boosalis, M. S., Sowers, L. C., Cheong, C., and Tinoco, I., Jr. (1988) Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc. Natl. Acad Sci. USA 85, 6252–6256.PubMedCrossRefGoogle Scholar
  10. 10.
    Kawasaki, E. (1990) Amplification of RNA, in PCR Protocols (Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., eds.), Academic, New York, pp. 21–27.Google Scholar
  11. 11.
    New England BioLabs, 1990–1991 Catalog, “Cleavage close to the end of DNA fragments,” p. 132.Google Scholar
  12. 12.
    Jung, V., Pestka, S. B., and Pestka, S. (1990) Efficient cloning of PCR generated DNA containing terminal restriction endonuclease recognition sites. Nucleic Acids Res. 18, 6156.PubMedCrossRefGoogle Scholar
  13. 13.
    Eckert, K. A. and Kunkel, T. A. (1991) The fidelity of DNA polymerase used in PCR, in Polymerase Chain Reaction: A Practical Approach (McPherson, M. J., Quirke, P., and Taylor, G. R., eds.), IRL, Oxford, UK, pp. 227–246.Google Scholar
  14. 14.
    Marchuk, D., Drumm, M., Saulino, A., and Collins, F. S. (1991) Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 19, 1154.PubMedCrossRefGoogle Scholar
  15. 15.
    Holton, T. A. and Graham, M. W. (1991) A simple and efficient method for direct cloning of PCR products using ddt-tailed vectors. Nucleic Acids Res. 19, 1156.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Wojciech Rychlik
    • 1
  1. 1.National BiosciencesPlymouth

Personalised recommendations