Generation of Large Insert YAC Libraries

  • Zoia Larin
  • Anthony P. Monaco
  • Hans Lehrach
Part of the Springer Protocols Handbooks book series (SPH)


The introduction of yeast artificial chromosomes (YACs) as cloning vectors in 1987 has significantly advanced the analysis of complex genomes (1). The capability of cloning large DNA (100–2000 kb) as YACs has accelerated the construction of physical maps and contig building (a contiguous set of overlapping clones). YAC contigs now cover entire human chromosomes (i.e., Y and 21) (2,3) and small genomes (i.e., Schizo-saccharomyces pombe) (4), and large YAC contigs cover much of the human genome (5). The main advantages of YACs over prokaryotic-based cloning systems are their large insert capacity and ability to maintain sequences that are unstable or not well represented in bacteriophage or cosmid genomic libraries (6). Therefore, YACs complement existing cloning vectors (cosmids, bacteriophage) and new cloning vectors (PI bacteriophage [PI], bacterial artificial chromosomes [BACs], and PI-derived artificial chromosomes [PACs]; for review, see ref. 7) in mapping and chromosome walking projects (6,8).


Bacterial Artificial Chromosome Yeast Chromosome Resuspend Pellet Agarose Block Spheroplast Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large DNA segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.PubMedCrossRefGoogle Scholar
  2. 2.
    Foote, S., Vollrath, D., Hilton, A., and Page, D. C. (1992) The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science 258, 60–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Chumakov, I., Rigault, P., Guillou, S., Ougen, P., Billaut, A., Guasconi, G., et al. (1992) Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380–387.PubMedCrossRefGoogle Scholar
  4. 4.
    Maier, E., Howeisel, J., McCarthy, L., Mott, R., Grigoriev, A. P., Monaco, A. P., Larin, Z., and Lehrach, H. (1992) Complete coverage of the Schizosaccharomyces pombe genome in yeast artificial chromosomes. Nature Genet. 1, 273–297.PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen, D., Chumakov, L., and Weissenbach, J. (1993) A first-generation physical map of the human genome. Nature 366, 698–701.PubMedCrossRefGoogle Scholar
  6. 6.
    Coulson, A., Waterston, R., Kiff, J., Sulston, J., and Kohara, Y. (1988) Genome linking with yeast artificial chromosomes. Nature 335, 184–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Monaco, A. P. and Larin, Z. (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 12, 280–286.PubMedCrossRefGoogle Scholar
  8. 8.
    Garza, D., Ajioka, J. W., Burke, D. T., and Hartl, D. L. (1989) Mapping the Drosophila genome with yeast artificial chromosomes. Science 246, 641–646.PubMedCrossRefGoogle Scholar
  9. 9.
    Guzman, P. and Ecker, J. (1988) Development of large DNA methods for plants: molecular cloning of large segments of Arabidopsis and carrot DNA into yeast. Nucleic Acids Res. 16, 11,091–11,105.PubMedCrossRefGoogle Scholar
  10. 10.
    Larin, Z., Monaco, A. P., and Lehrach, H. (1991) Yeast artificial chromosome libraries containing large inserts from mouse and human DNA. Proc. Natl. Acad. Sci. USA 88, 4123–4127.PubMedCrossRefGoogle Scholar
  11. 11.
    Burke, D. T., Rossi, J. M., Leung, J., Koos, D. S., and Tilghman, S. M. (1991) A mouse genomic library of yeast artificial chromosome clones. Mammal. Genome 1, 65.CrossRefGoogle Scholar
  12. 12.
    Anand, R., Villasante, A., and Tyler-Smith, C. (1989) Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucleic Acids Res. 17, 3425–3433.PubMedCrossRefGoogle Scholar
  13. 13.
    Albertsen, H. M., Abderrahim, H., Cann, H. C., Dausset, J., Le Paslier, D., and Cohen, D. (1990) Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents. Proc. Natl. Acad. Sci. USA 87, 5109–5113.CrossRefGoogle Scholar
  14. 14.
    Reeves, R. H., Pavan, W. J., and Hieter, P. (1992) Yeast artificial chromosome modification and manipulation, in Methods in Enzymology, vol. 216 (Wu, R., ed.), Humana, Totowa, NJ, pp. 584–603.Google Scholar
  15. 15.
    Chartier, F. L., Keer, J. T., Sutcliffe, M. J., Henriques, D. A., Mileham, P., and Brown, S. D. M. (1992) Construction of a mouse yeast artificial chromosome library in a recombinant-deficient strain. Nature Genet. 1, 132–136.PubMedCrossRefGoogle Scholar
  16. 16.
    Neil, D. L., Villasante, A., Fisher, R. B., Vetrie, D., Cox, B., and Tyler-Smith, C. (1990) Complete coverage of the Schizosaccharomyces pombe genome in yeast artificial chromosomes. Nucleic Acids Res. 18, 421–428.CrossRefGoogle Scholar
  17. 17.
    Ling, L. L., Ma, N. S.-F., Smith, D. R., Miller, D. D., and Moir, D. T. (1993) Reduced occurrence of chimeric YACs in recombinant deficient hosts. Nucleic Acids Res. 21, 6045,6046.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, D. R., Smyth, A. P., and Moir, D. T. (1992) Copy number amplification of yeast artificial chromosomes, in Methods in Enzymology, vol. 216 (Wu, R., ed.), Humana, Totowa, NJ, pp. 603–614.Google Scholar
  19. 19.
    McCormick, M. K., Shero, J. H., Cheung, M. C., Kan, Y. W., Hieter, P. A., and Antonarakis, S. E. (1989) Construction of human chromosome 21-specific yeast artificial chromosomes. Proc. Natl. Acad. Sci. USA 86, 9991–9995.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, J. T., Murgia, A., Sosnoski, D. M., Olivos, I. M., and Nussbaum, R. L. (1992) Construction and characterisation of a yeast artificial chromosome library for Xpter-Xq27. 3: a systematic determination of cocloning rate and X-chromosome representation. Genomics 12, 526–533.PubMedCrossRefGoogle Scholar
  21. 21.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  22. 22.
    Herrmann, B. G., Barlow, D. P., and Lehrach, H. (1987) An inverted duplication of more than 650 Kbp in mouse chromosome 17 mediates unequal but homologous recombination between chromosomes heterozygous for a large inversion. Cell 48, 813–825.PubMedCrossRefGoogle Scholar
  23. 23.
    Rothstein, R. (1985) Cloning in yeast, in DNA Cloning Volume II (Glover, D. M., ed.), IRL Press, Oxford, UK, pp. 45–65.Google Scholar
  24. 24.
    Burgers, P. M. J. and Percival, K. J. (1987) Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163, 391–397.PubMedCrossRefGoogle Scholar
  25. 25.
    Hieter, P., Mann, C., Snyder, M., and Davis, R. W. (1985) Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40, 381–392.PubMedCrossRefGoogle Scholar
  26. 26.
    Green, E. D. and Olson, M. V. (1990) Systematic screening of yeast artificial chromosome libraries by use of the polymerase chain reaction. Proc. Natl. Acad. Sci. USA 87, 1213–1217.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Zoia Larin
    • 1
  • Anthony P. Monaco
    • 2
  • Hans Lehrach
    • 3
  1. 1.Institute of Molecular MedicineUniversity of OxfordOxfordUK
  2. 2.Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  3. 3.Max Planck Institut füur Moleculare GenetikBerlinGermany

Personalised recommendations