cDNA Library Construction for the Lambda ZAP®-Based Vectors

  • Marjory A. Snead
  • Michelle A. Alting-Mees
  • Jay M. Short
Part of the Springer Protocols Handbooks book series (SPH)


Each organism and tissue type has a unique population of messenger RNA (mRNA) molecules. These mRNA populations are difficult to maintain, clone, and amplify; therefore, they must be converted to more stable DNA molecules (cDNA). Successful cDNA synthesis should yield full-length copies of the original population of mRNA molecules. Hence, the quality of the cDNA library can be only as good as the quality of the mRNA. Pure, undegraded mRNA is essential for the construction of large, representative cDNA libraries (1). Secondary structure of mRNA molecules can cause the synthesis of truncated cDNA fragments. In this case, treatment of the mRNA with a denaturant, such as methyl-mercuric hydroxide, prior to synthesis may be necessary (2). Other potential difficulties include DNA molecules contaminating the mRNA sample. DNA can clone efficiently, and their introns can confuse results. RNase-free DNase treatment of the sample is recommended.


mRNA Molecule mRNA Sample Geiger Counter Unincorporated Nucleotide Ligation Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  2. 2.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (eds.) (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  3. 3.
    Han, J. H. and Rutter, W. J. (1987) Lambda gt22, an improved lambda vector for the directional cloning of full-length cDNA. Nucleic Acids Res. 15, 6304.PubMedCrossRefGoogle Scholar
  4. 4.
    Huynh, T. V., Young, R. A., and Davis, R. W. (1985) DNA Cloning, vol. I (Glover, D. A., ed.), IRL, Washington, DC, pp. 49–78.Google Scholar
  5. 5.
    Meissner, P. S., Sisk, W. P., and Berman, M. L. (1987) Bacteriophage lambda cloning system for the construction of directional cDNA libraries. Proc. Natl. Acad. Sci. USA 84, 438–447.CrossRefGoogle Scholar
  6. 6.
    Murphy, A. J. M. and Efstratiadis, A. (1987) Cloning vectors for expression of cDNA libraries in mammalian cells. Proc. Natl. Acad. Sci. USA 84, 8277–8281.PubMedCrossRefGoogle Scholar
  7. 7.
    Palazzolo, M. J. and Meyerowitz, E. M. (1987) A family of lambda phage cDNA cloning vectors, lambda SWAJ, allowing the amplification of RNA sequences. Gene 52, 197–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Scherer, G., Telford, J., Baldari, C., and Pirrotta, V. (1981) Isolation of cloned genes differentially expressed at early and late stages of Drosophila embryonic development. Dev. Biol. 86, 438–447.PubMedCrossRefGoogle Scholar
  9. 9.
    Young, R. A. and Davis, R. W. (1983) Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80, 1194–1198.PubMedCrossRefGoogle Scholar
  10. 10.
    Young, R. A. and Davis, R. W. (1983) Yeast RNA polymerase II genes: isolation with antibody probes. Science 222, 778–782.PubMedCrossRefGoogle Scholar
  11. 11.
    Swaroop, A. and Weissman, S. M. (1988) Charon BS (+) and (−), versatile lambda phage vectors for constructing directional cDNA libraries and their efficient transfer to plasmids. Nucleic Acids Res. 16, 8739.PubMedCrossRefGoogle Scholar
  12. 12.
    Palazzolo, M. J., Hamilton, B. A., Ding, D. L., Martin, C. H., Mead, D. A., Mierendorf, R. C., Raghavan, K. V., Meyerowitz, E. M., and Lipshitz, H. D. (1990) Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and CreloxP automatic plasmid subcloning. Gene 88, 25–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Short, J. M., Fernandez, J. M., Sorge, J. A., and Huse, W. D. (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 16, 7583–7600.PubMedCrossRefGoogle Scholar
  14. 14.
    Alting-Mees, M., Hoener, P., Ardourel, D., Sorge, J. A., and Short, J. M. (1992) New lambda and phagemid vectors for prokaryotic and eukaryotic expression. Strategies Mol. Biol. 5(3), 58–61.Google Scholar
  15. 15.
    Gubler, U. and Hoffman, B. J. (1983) A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269.PubMedCrossRefGoogle Scholar
  16. 16.
    Huse, W. D. and Hansen, C. (1988) cDNA cloning redefined: a rapid, efficient, directional method. Strategies Mol. Biol. 1(1), 1–3.Google Scholar
  17. 17.
    Kimmel, A. R. and Berger, S. L. (1989) Preparation of cDNA and the generation of cDNA libraries: overview. Methods Enzymol. 152, 307–316.CrossRefGoogle Scholar
  18. 18.
    Krug, M. S. and Berger, S. L. (1989) First strand cDNA synthesis primed with oligo (dT). Methods Enzymol. 152, 316–325.CrossRefGoogle Scholar
  19. 19.
    Okayama, H. and Berg, P. (1982) High-efficiency cloning of full-length cDNA. Mol. Cell. Biol. 2, 161–170.PubMedGoogle Scholar
  20. 20.
    Gerard, G. (1989) cDNA synthesis by cloned Moloney Murine Leukemia Virus reverse transcriptase lacking RNaseH activity. Focus 11, 66.Google Scholar
  21. 21.
    Nielson, K., Simcox, T. G., Schoettlin, W., Buchner, R., Scott, B., and Mathur, E. (1993) StratascriptTM RNaseH-reverse transcriptase for larger yields of full-length cDNA transcripts. Strategies Mol. Biol. 6(2), 45.Google Scholar
  22. 22.
    Costa, L., Grafsky, A., and Weiner, M. P. (1994) Cloning and analysis of PCR-generated DNA fragments. PCR Methods Applic. 3, 338–345.CrossRefGoogle Scholar
  23. 23.
    Hu, G. (1993) DNA polymerase-catalyzed addition of nontemplated extra nucleotides to the 3′ end of a DNA fragment. DNA Cell Biol. 12(8), 763–770.PubMedCrossRefGoogle Scholar
  24. 24.
    Kretz, P. L., Reid, C. H., Greener, A., and Short, J. M. (1989) Effect of lambda packaging extract mcr restriction activity on DNA cloning. Nucleic Acids Res. 17, 5409.PubMedCrossRefGoogle Scholar
  25. 25.
    Kretz, P. L. and Short, J. M. (1989) GigapackTMII: restriction free (hsd-, mcrA-, mcrB-, mrr-) lambda packaging extracts. Strategies Mol. Biol. 2(2), 25,26.Google Scholar
  26. 26.
    Bullock, W., Fernandez, J. M., and Short, J. M. (1987) XL1-blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5(4), 376–379.Google Scholar
  27. 27.
    Kohler, S. W., Provost, G. S., Kretz, P. L., Dycaico, M. J., Sorge, J. A., and Short, J. M. (1990) Development of short-term in vivo mutagenesis assay. The effects of methylation on the recovery of a lambda phage shuttle vector from transgenic mice. Nucleic Acids Res. 18, 3007–3013.PubMedCrossRefGoogle Scholar
  28. 28.
    Kretz, P. L., Kohler, S. W., and Short, J. M. (1991) Gigapack® III high efficiency lambda packaging extract with single-tube convenience. Strategies Mol. Biol. 7(2), 44,45.Google Scholar
  29. 29.
    Kretz, P. L., Kohler, S. W., and Short, J. M. (1991). Identification and characterization of a gene responsible for inhibiting propagation of methylated DNA sequences in mcrA and mcrB Escherichia coli strains. J. Bacteriol. 173, 4707–4716.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Marjory A. Snead
    • 1
  • Michelle A. Alting-Mees
    • 2
  • Jay M. Short
    • 1
  1. 1.Diversa CorporationSan Diego
  2. 2.Stratagene CorporationLa Jolla

Personalised recommendations