Advertisement

RNA Probes for the Analysis of Gene Expression

  • Dominique Belin
Protocol
  • 114 Downloads
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The isolation and characterization of RNA polymerases from the Salmonella phage SP6 and the E. coli phages T7 and T3 has revolutionized all aspects of the study of RNA metabolism (1, 2, 3, 4, 5, 6). Indeed, it is now possible to generate unlimited quantities of virtually any RNA molecule in a chemically pure form. This technology is based on a number of properties of the viral transcription units. First, and in contrast to their cellular counterparts, the enzymes are single-chain proteins that were easily purified from phage-infected cells and are now produced by recombinant DNA technology. Second, they very specifically recognize their own promoters (7 and references therein), which are contiguous 17–20-bp-long sequences rarely encountered in bacterial, plasmid, or eukaryotic sequences. Third, the enzymes are highly processive, allowing the efficient synthesis of very long transcripts from DNA templates. In this chapter, the preparation of the DNA templates, the transcription from the templates of labeled synthetic RNA molecules, commonly called riboprobes, and their use in Northern and RNase protection assays are discussed.

Keywords

Absorbance Unit RNase Protection Assay Northern Blot Hybridization Transcription Efficiency Pancreatic RNase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Butler, E. T. and Chamberlin, M. J. (1984) Bacteriophage SP6-specific RNA polymerase. J. Biol. Chem. 257, 5772–5788.Google Scholar
  2. 2.
    Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.PubMedCrossRefGoogle Scholar
  3. 3.
    Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.PubMedCrossRefGoogle Scholar
  4. 4.
    Krieg, P. A. and Melton, D. A. (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155, 397–415.PubMedCrossRefGoogle Scholar
  5. 5.
    Yisraeli, J. K. and Melton, D. A. (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol 180, 42–50.PubMedCrossRefGoogle Scholar
  6. 6.
    Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Breaker, R. B., Banerji, A., and Joyce, G. F. (1994) Continuous in vitro evolution of bacteriophage RNA polymerase promoters. Biochemistry 33, 11,980–11,986.PubMedCrossRefGoogle Scholar
  8. 8.
    Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.PubMedCrossRefGoogle Scholar
  9. 9.
    Roitsch, T. and Lehle, L. (1989) Requirements for efficient in vitro transcription and translation: a study using yeast invertase as a probe. Biochim. Biophys. Acta 1009, 19–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Schenbon, E. T. and Mierendorf, R. C. (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6234.CrossRefGoogle Scholar
  11. 11.
    Nam, S. C. and Kang, C. (1988) Transcription initiation site selection and abortive initiation cycling of phage SP6 RNA polymerase. J. Biol. Chem. 263, 18,123–18,127.PubMedGoogle Scholar
  12. 12.
    Solazzo, M., Spinelli, L., and Cesareni, G. (1987) SP6 RNA polymerase: sequence requirements downstream from the transcription start site. Focus 10, 11,12.Google Scholar
  13. 13.
    Stump, W. T. and Hall, K. B. (1993) SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res. 21, 5480–5484.PubMedCrossRefGoogle Scholar
  14. 14.
    Moreau, G. (1991) RNA binding properties of the Xenopus LA proteins. Ph. D. dissertation, University of Geneva, Switzerland.Google Scholar
  15. 15.
    Taylor, D. R. and Mathews, M. B. (1993) Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology. Nucleic Acids Res. 21, 1927–1933.PubMedCrossRefGoogle Scholar
  16. 16.
    Sappino, A.-P., Huarte, J., Belin, D., and Vassalli, J.-D. (1989) Plasminogen activators in tissue remodeling and invasion: mRNA localization in mouse ovaries and implanting embryos. J. Cell Biol. 109, 2471–2479.PubMedCrossRefGoogle Scholar
  17. 17.
    Jostarndt, K., Puntschart, A., Hoppeler, H., and Billeter, R. (1994) The use of [33P]-labeled riboprobes for in situ hybridizations: localization of myosin light chain mRNAs in adult human skeletal muscle. Histochem. J. 26, 32–40.PubMedGoogle Scholar
  18. 18.
    Dorries, U., Bartsch, U., Nolte, C., Roth, J., and Schachner, M. (1993) Adaptation of a non-radioactive in situ hybridization method to electron microscopy: detection of tenascin mRNA in mouse cerebellum with digoxigenin-labeled probes and gold-labeled antibodies. Histochemistry 99, 251–262.PubMedCrossRefGoogle Scholar
  19. 19.
    Kriegsmann, J., Keyszer, G., Geiler, T., Gay, R. E., and Gay, S. (1994) A new double labeling technique for combined in situ hybridization and immunohistochemical analysis. Lab. Invest. 71, 911–917.PubMedGoogle Scholar
  20. 20.
    Egger, D., Troxler, M., and Bienz, K. (1994) Light and electron microscopic in situ hybridization: non-radioactive labeling and detection, double hybridization, and combined hybridization-immunocytochemistry. J. Histochem. Cytochem. 42, 815–822.PubMedCrossRefGoogle Scholar
  21. 21.
    Pokrovskaya, I. D. and Gurevich, V. V. (1994) In vitro transcription: preparative RNA yields in analytical scale reactions. Anal. Biochem. 220, 420–423.PubMedCrossRefGoogle Scholar
  22. 22.
    Krieg, P. A. (1991) Improved synthesis of full length RNA probe at reduced incubation temperatures. Nucleic Acids Res. 18, 6463.CrossRefGoogle Scholar
  23. 23.
    Belin, D., Mudd, E. A., Prentki, P., Yi-Yi, Y., and Krisch, H. M. (1987) Sense and antisense transcription of bacteriophage T4 gene 32. J. Mol. Biol. 194, 231–243.PubMedCrossRefGoogle Scholar
  24. 24.
    Mead, D. A., Szesna-Skorupa, E., and Kemper, B. (1986) Single-stranded DNA blue T7 promoter plasmids. Protein Eng. 1, 67–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Macdonald, L. E., Durbin, R. K., and McAllister, W. T. (1994) Characterisation of two types of termination signals for bacteriophage T7 RNA polymerase. J. Mol. Biol. 238, 145–158.PubMedCrossRefGoogle Scholar
  26. 26.
    Curran, J., Marq, J. B., and Kolakofsky, D. (1992) The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189, 647–656.PubMedCrossRefGoogle Scholar
  27. 27.
    Hod, Y. (1992) A simplified ribonuclease protection assay. Biotechniques 13, 852–853.PubMedGoogle Scholar
  28. 28.
    Lau, E. T., Kong, R. Y. C., and Cheah, K. S. E. (1993) A critical assessment of the RNase protection assay as a means of determining exon sizes. Anal. Biochem. 209, 360–366.PubMedCrossRefGoogle Scholar
  29. 29.
    Belin, D., Wohlwend, A., Schleuning, W.-D., Kruithof, E. K. O., and Vassalli, J.-D. (1989) Facultative polypeptide translocation allows a single mRNA to encode the secreted and cytosolic forms of plasminogen activators inhibitor 2. EMBO J. 8, 3287–3294.PubMedGoogle Scholar
  30. 30.
    Vassalli, J.-D., Huarte, J., Bosco, D., Sappino, A.-P., Sappino, N., Velardi, A., Wohlwend, A., Erno, H., Monard, D., and Belin, D. (1993) Protease-nexin I as an androgen-dependent secretory product of the murine seminal vesicle. EMBO J. 12, 1871–1878.PubMedGoogle Scholar
  31. 31.
    Lyakhov, D. L., He, B., Zhang, X., Studier, F. W., Dunn, J. J., and McAllister, W. T. (1997) Mutant bacteriophage T7 RNA polymerases with altered termination properties. J. Mol. Biol 269, 28–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Scott, P. A. E., Smith, K., Bichmel, R., and Harris, A. L. (1977) Reliable external control for RNase protection assays. Nucleic Acids Res. 95, 1305–1306.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Dominique Belin
    • 1
  1. 1.Department of PathologyUniversity of Geneva Medical CenterGenevaSwitzerland

Personalised recommendations