Advertisement

Three-Dimensional Organ Culture Systems

  • B. Rogister
  • J. M. Rigo
  • P.P. Lefebvre
  • P. Leprince
  • P. Delree
  • D. Martin
  • J. Schoenen
  • G. Moonen
Part of the Neuromethods book series (NM, volume 23)

Abstract

Normal brain functions are to the highest degree dependent on the cytoarchitecture and the intercellular relationships that govern both the nervous system metabolism (for instance, the integrity of the blood-brain barrier) and specific functions (synaptic transmission, glioneuronal relationships). Thus, the study of the biology of the nerve cells should be approached using experimental designs that preserve the histological structure in which these cells take part in vivo.

Keywords

Hair Cell Dorsal Root Ganglion Neuron Kainic Acid Spiral Ganglion Organotypic Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Backlund E. O. and Bjerkvig R. (1989) Stereotactic biopsies as a model for studying the interaction between gliomas and normal brain tissue in vitro. J. Neurosurg. Sci. 33, 31–33.PubMedGoogle Scholar
  2. 2.
    Berglund A. M. and Ruygo D. K. (1987) Hair cell innervation by spiral ganglion neurons in the mouse. J. Comp. Neurol. 255, 560–570.PubMedCrossRefGoogle Scholar
  3. 3.
    Bignami A., Eng L. F., Dahl D., and Uyeda C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435.PubMedCrossRefGoogle Scholar
  4. 4.
    Bignami A. and Dahl D. (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. Comp. Neurol. 153, 27–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Bottenstein J. E. and Sato G. (1979) Growth of rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76, 514–517.PubMedCrossRefGoogle Scholar
  6. 6.
    Bradford M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72, 248–255.PubMedCrossRefGoogle Scholar
  7. 7.
    Delrée P., Leprince P., Schoenen J., and Moonen G. (1989) Purification and culture of adult rat dorsal root ganglia neurons. J. Neurosci. Res. 23(2), 198–206.PubMedCrossRefGoogle Scholar
  8. 8.
    Edelman G. M. (1984) Modulation of cell adhesion during induction, histogenesis, and perinatal development of the nervous system. Ann. Rev. Neurosci. 7, 339–377.PubMedCrossRefGoogle Scholar
  9. 9.
    Eng L. (1988) Regulation of glial intermediate filaments in astrogliosis, in Biochemical Pathology of Astrocytes, (Norenberg M. D., Hertz L., and Schousboe A., eds.), Liss, New York, pp. 79–90.Google Scholar
  10. 10.
    Fryer H. J. C., Davies G. E., Manthorpe M., and Varon S. (1986) Lowry protein assay using an automatic microtiter plate spectrophotometer. Anal. Biochem. 153, 262–266.PubMedCrossRefGoogle Scholar
  11. 11.
    Gibbs W., Neale E. A., and Moonen G. (1982) Kainic acid sensitivity of mammalian Purkinje cells in monolayer cultures. Devel. Brain. Res. 4, 103–108.CrossRefGoogle Scholar
  12. 12.
    Glimelius B., Norling B., Nederman T., and Carlsson J. (1988) Extracellular matrices in multicellular spheroids of human glioma origin: Increased incorporation of proteoglycans and fibronectin as compared to monolayer cultures. APMIS 96, 433–444.PubMedCrossRefGoogle Scholar
  13. 13.
    Goldenberg S. and De Boni U. (1983) Pure populations of viable neurons from rabbit dorsal root ganglia, using gradients of Percoll. J. Neurobiol. 14, 195–206.PubMedCrossRefGoogle Scholar
  14. 14.
    Grau-Wagemans M-P., Selak I., Lefebvre P. P., and Moonen G. (1984) Cerebellar macroneurons in serum-free cultures: evidence for intrinsic neuronotrophic and neuronotoxic activities. Devel. Brain. Res. 15, 11–19.CrossRefGoogle Scholar
  15. 15.
    Hefti F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci. 6, 2155–2162.PubMedGoogle Scholar
  16. 16.
    Honegger P. and Lenoir D. (1982) Nerve Growth Factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cultures. Dev. Brain Res. 3, 229–238.CrossRefGoogle Scholar
  17. 17.
    Kiang N. Y. S., Rho J. M., Northrop C. E., Lieberman M. C., and Ruygo D. K. (1982) Hair cell innervation by spiral cells in adult cats. Science 217, 175–177.PubMedCrossRefGoogle Scholar
  18. 18.
    Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–683.PubMedCrossRefGoogle Scholar
  19. 19.
    Lefebvre P. P., Weber T., Leprince P., Rigo J.-M., Delrée P., Rogister B., and Moonen G. (1991) Kainate and NMDA toxicity for cultured developing and adult rat spiral ganglion neurons: further evidence for a glutamatergic excitatory neurotransmission at die inner hair cell synapse. Brain Res. 555, 75–83.PubMedCrossRefGoogle Scholar
  20. 20.
    Lefebvre P. P., Weber T., Rigo J.-M., Delrée P., Leprince P., and Moonen G. (1990a) Potassium-induced release of an endogenous toxic activity for outer hair cell and auditory neurons in the cochlea: a new pathophysiological mechanism in Meniere’s disease? Hearing Res. 47, 83–94.CrossRefGoogle Scholar
  21. 21.
    Lefebvre P. P., Leprince P., Weber T., Rigo J.-M., and Moonen G. (1990b) Neuronotrophic effect of developing otic vesicle on cochleovestibular neurons: evidence for nerve growth factor involvement. Brain Res. 507(2), 254–260.PubMedCrossRefGoogle Scholar
  22. 22.
    Lehmann S., Kuchler S., Theveniau M., Vincendon G., and Zanetta J.-P. (1990) An endogenous lectin and one of its neuronal glycoprotein ligands are involved in contact guidance of neuron migration. Proc. Natl. Acad. Sci. USA 87, 6455–6459.PubMedCrossRefGoogle Scholar
  23. 23.
    Lindner J., Rathjen F. G., and Sachner M. (1983): L1 mono-and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. Nature 305, 427–430.PubMedCrossRefGoogle Scholar
  24. 24.
    Lindner J., Guenther J., Nick H., Zinser G., Antonicek H., Schachner M., and Monard D. (1986) Modulation of granule cell migration by a gliaderived protein. Proc. Natl. Acad. Sci. USA 83, 4568–4571.PubMedCrossRefGoogle Scholar
  25. 25.
    Lund-Johansen M. (1990) Interactions between human glioma cells and fetal rat brain aggregates studied in a chemically defined medium. Invasion Metastasis 10, 113–128.PubMedGoogle Scholar
  26. 26.
    Manthorpe M., Fagnani R., Skaper S. D., and Varon S. (1986) An automated colorimetric assay for neurotrophic factors. Dev. Brain Res. 25, 191–198.CrossRefGoogle Scholar
  27. 27.
    McDonald R. L., Moonen G., Neale E. A., and Nelson P. G. (1982) Cerebellar macroneurones in microexplant cell culture. Postsynaptic amino acid pharmacology. Dev. Brain Res. 5, 77–88.Google Scholar
  28. 28.
    Moonen G., Neale E. A., McDonald R. L., Gibbs W., and Nelson P. G. (1982a) Cerebellar macroneurons in microexplant cell culture. Methodology, basic electrophysiology and morphology after horseradish peroxidase injection. Dev. Brain Res. 5, 59–73.CrossRefGoogle Scholar
  29. 29.
    Moonen G., Grau-Wagemans M.-P., and Selak I. (1982b) Plasminogen activator-plasmin system and neuronal migration. Nature 298, 753–755.PubMedCrossRefGoogle Scholar
  30. 30.
    Moonen G. and Nelson P. G. (1978) Some physiological properties of astrocytes in primary cultures, in Dynamic Properties of dial Cells (Schoffeniels E., Franck G., Tower D. B., and Hertz L. eds.), Pergamon, Elmsford, NY, pp. 389–393.Google Scholar
  31. 31.
    Moonen G., Selak I., and Grau-Wagemans M.-P. (1987) In vitro analysis of glial-neuronal communication during cerebellum ontogenesis, in Glio-Neuronal Communication in Development and Regeneration. (Althaus H. H. and Seifert W., eds.), Springer Verlag, Berlin, pp. 324–338.Google Scholar
  32. 32.
    Morgan D. L. M., Clover J., and Pearson J. D. (1988) Effects of synthetic polycations on leucine incorporation, lactate dehydrogenase release, and morphology of human umbilical vein endothelial cells. J. Cell Sri. 91, 231–238.Google Scholar
  33. 33.
    Morgenstern S., Flor R., Kessler G., and Klein B. (1965) Automated determination of NAD-coupled enzymes. Determination of lactate dehydrogenase. Anal. Biochem. 13, 149–161.CrossRefGoogle Scholar
  34. 34.
    Moscona A. A. (1965) Recombination of dissociated cells and the development of cell aggregates in Cells and tissues in culture, (Willmer E., ed.), Academic Press, New York, pp. 489–529.Google Scholar
  35. 35.
    Moscona A. A. (1973) Cell aggregation, in Cell biology in medicine, (Bittar E., ed.), Wiley, New York, pp. 571–591.Google Scholar
  36. 36.
    Mugnaini E. (1986) Cell junctions of astrocytes, ependyma and related cells in the mammalian central nervous system with emphasis on the hypothesis of a generalized functional syncytium of supporting cells, in Astrocytes Development, Morphology and Regional Specialization of Astrocytes. (Fedoroff S. and Vernadakis A., eds.), Academic, London, pp. 329–371.Google Scholar
  37. 37.
    Neale E. A., Moonen G., McDonald R. L., and Nelson P. G. (1982) Cerebellar macroneurons in microexplant cell culture ultrastructural morphology. Neuroscience 7, 1879–1890.PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson P. G. and Lieberman M. (1981) Excitable Cells in Tissue Culture. Plenum, New York, 1, 310.CrossRefGoogle Scholar
  39. 39.
    O’Callaghan J. P., Miller D. B., and Reinhard J. F. (1990) Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine. Brain Res. 521, 73–80.CrossRefGoogle Scholar
  40. 40.
    Parisi G., Tropea R., Giuffrida S., Lombardo M., and Giuffré F. (1986) Cystic meningiomas. Report of seven cases. J. Neurosurg. 64, 35–38.PubMedCrossRefGoogle Scholar
  41. 41.
    Pulliam L., Berens M. E., and Rosenblum M. L. (1988) A normal human brain cell aggregate model for neurobiological studies. J. Neurosci. Res. 21, 521–530.PubMedCrossRefGoogle Scholar
  42. 42.
    Rakic P. (1981) Neuronal-glial interaction during brain development. Trends Neurosci. July, 184–187.Google Scholar
  43. 43.
    Rakic P. (1985) Mechanisms of neuronal migration in developing cerebellar cortex, in Molecular Basis of Neural Development. (Edelman G. M., Gall W. E., and Cowan W. M. eds.), Wiley, New York, pp. 139–160.Google Scholar
  44. 44.
    Ransom B. R. and Kettenmann H. (1990) Electrical coupling, without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 3, 258–266.PubMedCrossRefGoogle Scholar
  45. 45.
    Rogister B., Leprince P., Delréee P., Van Damme J., Billiau A., and Moonen G. (1990) Enhanced release of plasminogen activator inhibitor(s) but not of plasminogen activators by cultured rat glial cells treated with interleukin-1. Glia 3, 252–257.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenberg M. B., Friedmann T., Robertson R. C., Tuszynski M., Wolff J. A., Breakefield X. O., and Gage F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578.PubMedCrossRefGoogle Scholar
  47. 47.
    Schoenen J., Delrée P., Leprince P., and Moonen G. (1989) Neurotransmitter phenotype plasticity in cultured dissociated adult rat dorsal root ganglia: an immunocytochemical study. J. Neurosci. Res. 22(4), 473–487.PubMedCrossRefGoogle Scholar
  48. 48.
    Selak I., Foidart J.-M., and Moonen G. (1985) Laminine promotes cerebellar granule cells migration in vitro and is synthesized by cultured astrocytes. Devel. Neurosci. 7, 278–285.CrossRefGoogle Scholar
  49. 49.
    Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of protein from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354.PubMedCrossRefGoogle Scholar
  50. 50.
    Williams L. R., Varon S., Peterson G. M., Wictorin K., Fischer W., Bjorklund A., and Gage F. H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. USA 83, 9231–9235.PubMedCrossRefGoogle Scholar
  51. 51.
    Yuhas J. M., Li A. P., Martinez A. O., and Ladman A. J. (1977) A simplified method for production and growth of multicellular tumour spheroids. Cancer Res. 37, 3639–3643.PubMedGoogle Scholar
  52. 52.
    Zenner H. P. (1986) K+-induced motility and depolarization of cochlear hair cells. Direct evidence for a new pathophysiological mechanism in Meniere’s disease. Arch. Otorhinolaryngol. 243, 108–111.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. Totowa, New Jersey 1992

Authors and Affiliations

  • B. Rogister
    • 1
  • J. M. Rigo
    • 1
  • P.P. Lefebvre
    • 1
  • P. Leprince
    • 1
  • P. Delree
    • 1
  • D. Martin
    • 1
  • J. Schoenen
    • 1
  • G. Moonen
    • 1
  1. 1.Department of Human Physiology and PathophysiologyUniversity of LiegeLiegeBelgium

Personalised recommendations