Advertisement

Syncytial Assays

  • Myra O. McClure
Part of the Methods in Molecular Biology book series (MIMB, volume 8)

Abstract

Investigation of the biological activity of viruses in vitro necessitates some means of identifying their presence within cells and assaying their activity. Since virus particles themselves are metabolically inert, their detection and quantitation is dependent on their cellular effects or on synthesis of viral antigens, enzymes, and the like. Virus-induced cell fusion is a cytopathic cellular response easily recognizable by microscopic examination, which has been exploited to considerable advantage in virology, as will be briefly discussed.

Keywords

Cell Fusion Murine Leukemia Virus Bovine Leukemia Virus Mouse Mammary Tumor Virus Tissue Culture Infectious Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Scheid, A. and Choppin, P. W. (1974) Identification of biological activities of para-myzovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57,475–490.PubMedCrossRefGoogle Scholar
  2. 2.
    Scheid, A. and Choppin, P. W. (1976) Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases. Virology 69, 265–277.PubMedCrossRefGoogle Scholar
  3. 3.
    Varsanyi, T. M., Jönvall and Norrby, E. (1985) Isolation and characterization of the measles virus F1 polypeptide: Comparison with other paramyzovirus fusion proteins. Virology 147,110–117.PubMedCrossRefGoogle Scholar
  4. 4.
    Temin, H. M. and Mitzutani, S. (1970) tRNA-dependent DNA polymerase in virions of Rous sarcoma virus Nature 226, 1211–1213.PubMedCrossRefGoogle Scholar
  5. 5.
    Baltimore, D. (1970) tRNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 226, 1209–1211.PubMedCrossRefGoogle Scholar
  6. 6.
    Svoboda, J., Chyle, P., Simkovic, D, and Hilgert, I (1963) Demonstration of the absence of infectious Rous virus in rat tumor XC, whose structurally intact cells produce Rous sarcoma when transferred to chicks. Folia Biol. (Prague) 9, 77–81.Google Scholar
  7. 7.
    Klement, V., Rowe, W. P., Hartley, J. W., and Pugh, W. E. (1969) Mixed culture cytopathogenicily: A new test for growth of murine leukemia viruses in tissue culture. Proc. Natl. Acad. Sci. USA 63, 753–758.PubMedCrossRefGoogle Scholar
  8. 8.
    Rowe, W. P., Pugh, W. E., and Hartley, J. W. (1970) Plaque assay techniques for murine leukemia viruses. Virology 42,1136–1139.PubMedCrossRefGoogle Scholar
  9. 9.
    Teich, N. M. (1985) Taxonomy of retroviruses, in RNA Tumor Viruses, vol. 1 (Weiss, R. A., Teich, N. M., Varmus, H. E., and Coffin, J., eds.), Cold Spring Harbor Laboratory, NY, pp. 25–207.Google Scholar
  10. 10.
    Rangan, S R. S., Moyer, M. C., Cheong, M P., and Jensen, E M. (1972) Detection and assay of feline leukemia virus (FeLV) by a mixed-culture cytopathogenicity method. Virology 47, 247–250.PubMedCrossRefGoogle Scholar
  11. 11.
    Hampar, B., Rand, K. H., Lemer, A., del Villano, B. C., McAllister, R. M., Martos, L. M., Derge, J. G., Long, C. W., and Gilden, R. V. (1973) Formation of syncytia in human lymphoblastoid cells infected with type-C viruses. Virology 55, 453–463.PubMedCrossRefGoogle Scholar
  12. 12.
    Chatterjee, S. and Hunter, E. (1980) Fusion of normal primate cells: A common biological property of the D-type retroviruses Virology 107, 100–108.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoshino, H., Shimoyama, M., Miwa, N., and Sugimura, T. (1983) Detection of lymphocytes producing a human retrovirus associated with adult T-cell leukemia by syncytia induction assay. Proc. Natl. Acad. Sci. USA 80, 7337–7341.PubMedCrossRefGoogle Scholar
  14. 14.
    Nagy, K., Clapham, P. R., Cheingsong-Popov, R., and Weiss, R. A. (1983) Human T-cell leukemia virus type I: Induction of syncytia and inhibition by patients’ sera. Int. J. Cancer 32 321–328.PubMedCrossRefGoogle Scholar
  15. 15.
    Dalgleish, A. G., Beverley, P. C. L., Clapham, P. R., Crawford, D. H., Greaves, M. F., and Weiss, R. A. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–766.PubMedCrossRefGoogle Scholar
  16. 16.
    Montagnier, L., Gruest, J., Chamaret, S., Dauguet, C., Axler, C., Guetard, D., Nugeyre, M. T., Barré-Sinoussi, F., Chermann, J. C., Brunet, J. B., et al. (1984) Adaptauon of lymphadenopathy associated virus (LAV) to replication in EBV-transformed B lymphoblastoid cell lines. Science 225, 63–66.PubMedCrossRefGoogle Scholar
  17. 17.
    McClure, M. O., Sommerfelt, M. A., Marsh, M., and Weiss, R. A. (1990) On the pH-dependence of mammalian retrovirus infection. J. Gen. Virol. 71, 767–773.PubMedCrossRefGoogle Scholar
  18. 18.
    Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J-C., and Montagnier, L. (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767,768.PubMedCrossRefGoogle Scholar
  19. 19.
    Sommerfelt, M. A. and Weiss, R. A. (1990) Receptor interference groups of twenty retroviruses plating on human cells. Vtrology 176, 58–69.CrossRefGoogle Scholar
  20. 20.
    Bratt, M. A. and Gallaher, W. R. (1969) Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. Proc. Natl Acad. Sci. USA 64, 536–543.PubMedCrossRefGoogle Scholar
  21. 21.
    Baba, M., Schols, D., Pauwels, R., Nakashima, H., and De Clercq, E. (1990) Sulfated polysaccharides as potent inhibitors of HIV-induced syncytium formation: A new strategy towards AIDS chemotherapy. J. Acq. Immun. Defic. Synd. 3,493–499.Google Scholar
  22. 22.
    Graves, D. C. and Jones, L V. (1981) Early syncytium formation by bovine leukemia virus. J. Virol. 38, 1055–1063.PubMedGoogle Scholar
  23. 23.
    Toyoshima, K. and Vogt, P. K. (1969) Enhancement and inhibition of avian sarcoma viruses by polycations and polyanions. Virology 38, 414–426PubMedCrossRefGoogle Scholar
  24. 24.
    Zarling, D. A. and Keshet, I. (1979) Fusion activity of virions of murine leukemia virus. Vtrology 95, 185–196.CrossRefGoogle Scholar
  25. 25.
    Wiley, C. A., Schrier, R. D., Nelson, J. A., Lampert, P. W., and Oldstone, M, B. A. (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad. Sci. USA 83, 7089–7093.PubMedCrossRefGoogle Scholar
  26. 26.
    Marsh, M. and Helenius, A. (1989) Virus entry into animal cells. Adv. Virus Res. 36, 107–151.PubMedCrossRefGoogle Scholar
  27. 27.
    Redmond, S., Peters, G., and Dickson, C. (1984) Mouse mammary tumor virus can mediate cell fusion at reduced pH. Virology 133, 393–402PubMedCrossRefGoogle Scholar
  28. 28.
    Andersen, K. B. (1985) The fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts. Virology 142, 112–120.PubMedCrossRefGoogle Scholar
  29. 29.
    Andersen, K. B (1987) Cleavage fragments of the retrovirus protein gp70 during virus entry. J. Gen. Virol. 68, 2193–2202.PubMedCrossRefGoogle Scholar
  30. 30.
    Andersen, K. B. and Skov, H. (1989) Retrovirus-induced cell fusion is enhanced by protease treatment. J. Gen. Virol. 70, 1921–1927.PubMedCrossRefGoogle Scholar
  31. 31.
    Pinter, A., Chen, T.-E., Lowy, A., Cortez, N. G., and Silagi, S. (1986) Ecotropic murine leukemia virus-induced fusion of murine cells. J. Virol. 57, 1048–1054.PubMedGoogle Scholar
  32. 32.
    Rand, K., Davis, J., Gilden, R. V., Oroszlan, S., and Long, C (1975) Fusion inhibition Bioassay of a type-C viral protein. Virology 64, 63–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmed, M., Korol, W., Larson, D. L., Harewood, K. R., and Mayyasi, S. A. (1975) Interactions between endogenous baboon type-C virus and oncogenic viruses. 1. Syncytium induction and development of infectivity assay. Int J. Cancer 16, 747–755.PubMedCrossRefGoogle Scholar
  34. 34.
    Sommerfelt, M. A., Williams, B. P., Clapham, P. R., Solomon, E., Goodfellow, P. N., and Weiss, R. A. (1988) Human T cell leukemia viruses use a receptor determined by human chromosome 17. Science 242, 1557–1559.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1991

Authors and Affiliations

  • Myra O. McClure
    • 1
  1. 1.Chester Beatty LaboratoriesInstitute of Cancer ResearchLondonUK

Personalised recommendations