Expression Vectors for the Construction of Hybrid Ty-VLPs

  • Sally E. Adams
  • S. Mark
  • H. Richardson
  • Susan M. Kingsman
  • Alan J. Kingsman
Part of the Methods in Molecular Biology book series (MIMB, volume 8)


The synthesis of recombinant proteins or protein domains in microbial, insect, or mammalian systems is now commonplace in molecular biology laboratories. The gene or gene fragment encoding the protein of interest is inserted into a specialized expression vector, flanked by efficient transcription and translation control sequences. The expression vector is then inserted into recipient cells and expression of the protein induced. The expressed protein then has to be purified from other cellular or medium components. Purification can be facilitated by expressing the recombinant protein as a fusion with a carrier protein that assembles into particulate structures. This approach has been developed using a protein encoded by the yeast retrotransposon Ty, which self-assembles into virus-like particles (VLPs) (1,2). Additional protein coding sequences can be fused to the carrier protein gene and expressed in yeast to produce hybrid Ty-VLPs (3,4). The physical characteristics of the VLPs have been exploited to produce a rapid purification procedure that is essentially generic for any hybrid construction. Hybrid VLPs can be used in many laboratory applications (see elsewhere in this vol), including the production of polyclonal and monoclonal antibodies, structure/function analyses, the detection of important antigenic determinants, and epitope mapping of monoclonal antibodies.


Klenow Fragment Calf Intestinal Alkaline Phosphatase Ethidium Bromide Solution YEPD Medium Sorvall SS34 Rotor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams, S E., Mellor, J., Gull, K., Sim, R B., Tuite, M. F., Kingsman, S M., and Kingsman, A. J (1987) The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins Cell 49, 111–119.PubMedCrossRefGoogle Scholar
  2. 2.
    Kingsman, A. J. and Kingsman, S. M. (1988) Ty: A retroelement moving forward. Cell 53, 333–335.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, S. E., Dawson, K. M., Gull, K., Kingsman S. M., and Kingsman, A. J. (1987) The expression of hybrid Ty virus-like particles in yeast. Nature 329, 68–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Kingsman, S M. and Kingsman, A. J. (1988) Polyvalent recombinant antigens: A new vaccine strategy. Vaccine 6, 304–307.PubMedCrossRefGoogle Scholar
  5. 5.
    Mellor, J, Malta, M. H., Gull, K, Tuite, M. F., McCready, S. M., Dibbayawan, T., Kingsman, S. M., and Kingsman, A. J. (1985) Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature 318, 583–586.PubMedCrossRefGoogle Scholar
  6. 6.
    Boeke, J. D., Garfinkel, D. J., Styles, C. A., and Fink, G. R. (1985) Ty elements transpose through an RNA intermediate. Cell 40, 491–500.PubMedCrossRefGoogle Scholar
  7. 7.
    Kingsman, A. J, Gimlich, R. L., Clarke, L., Chinault, A. C., and Carbon, J. A. (1981) Sequence variation in dispersed repetitive sequences in Saccharomyces cerexnsiae. J. Mol Biol 145, 619–632.PubMedCrossRefGoogle Scholar
  8. 8.
    Mellor, J., Fulton, A M., Dobson, M J., Wilson, W., Kingsman, S. M., and Kingsman, A. J. (1985) A retrovirus-like strategy for expression of a fusion protein encoded by the yeast transposon, Tyl. Nature 313, 243–246.PubMedCrossRefGoogle Scholar
  9. 9.
    Mellor, J., Fulton, A. M., Dobson, M. J., Roberts, N. A., Wilson, W., Kingsman, A. J, and Kingsman, S. M. (1985) The Ty transposon of Saccharomyces cerexnsiae determines the synthesis of at least three proteins. Nucleic Acids Res. 13, 6249–6263.PubMedCrossRefGoogle Scholar
  10. 10.
    Clare, J. and Farabaugh, P. (1985) Nucleotide sequence of a yeast Ty element; Evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82, 2829–2833.PubMedCrossRefGoogle Scholar
  11. 11.
    Roeder, G. S. and Fink, G. R. (1983) Transposable elements in yeast, in Mobile Genetic Elements (Shapiro, J. A., ed.), Academic, New York, pp. 299–328.Google Scholar
  12. 12.
    Elder, R. T., Loh, E. Y., and Davis, R. W. (1983) RNA from the yeast transposable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80, 2432–2436.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson, W., Malim, M. H., Kingsman, A. J., and Kingsman, S. M. (1986) Expression strategies of the yeast retrotransposon Ty: A short sequence directs ribosomal frameshifting. Nucleic Acids Res. 14, 7001–7015.PubMedCrossRefGoogle Scholar
  14. 14.
    Malim, M. H., Adams, S. E., Gull, K., Kingsman, A. J., and Kingsman, S. M. (1987) The production of hybrid TyIFN virus-like particles in yeast. Nucleic Acids Res. 15, 7571–7580.PubMedCrossRefGoogle Scholar
  15. 15.
    Braddock, M., Chambers, A., Wilson, W., Esnouf, M. P., Adams, S. E., Kingsman, A.J., and Kingsman, S. M. (1989) HTV-1 TAT “activates” presynthesized RNA in the nucleus. Cell 58, 269–279.PubMedCrossRefGoogle Scholar
  16. 16.
    Dobson, M.J, Tuite, M F., Roberts, N. A., King, R. M., Burke, D. C., Kingsman, A.J., and Kingsman S. M. (1982) Conservation of high efficiency promoter sequences in Saccharomyces cerexnsiae. Nucleic Acids Res. 10, 2625–2637.PubMedCrossRefGoogle Scholar
  17. 17.
    Kingsman, S.M., Cousens, D, Stanway, C. A., Chambers, A., Wilson, W., and Kingsman, A. J. High efficiency expression vectors based on the promoter of the phosphoglycerate kinase gene. Methods Enzymol., in press.Google Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1991

Authors and Affiliations

  • Sally E. Adams
    • 1
  • S. Mark
    • 1
  • H. Richardson
    • 1
  • Susan M. Kingsman
    • 2
  • Alan J. Kingsman
    • 1
  1. 1.British Bio-technology Ltd.OxfordUK
  2. 2.Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations