Herpes Simplex Virus Life Cycle and the Design of Viral Vectors

  • David S. Latchman
Part of the Methods in Molecular Biology book series (MIMB, volume 8)


Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) are doublestranded DNA viruses with a genome size of 152 kbp. The genome consists of two unique regions, UL (long) and Us (short), flanked by repeated sequences (Fig. 1; for review, see ref. 1). The two viruses are closely related, and both infect humans, producing mucocutaneous sores that are predominantly facial in the case of HSV-1 and genital in the case of HSV-2.


Viral Genome Herpes Simplex Virus Type Thymidine Kinase Recombinant Virus Chloramphenicol Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roizman, B. (1979) The organization of herpes simplex virus genomes. Ann. Rev. Genet. 13, 25–57.PubMedCrossRefGoogle Scholar
  2. 2.
    Spear, P. G. and Roizman, B (1980) Herpes simplex viruses, in DNA Tumour Viruses (Tooze, J., ed), 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 615–746.Google Scholar
  3. 3.
    Elion, G. B., Furman, P. A., Fyfe, J. A., de Mirando, P., Beauchamp, L., and Shaeffer, H.J. (1977) Selectivity of action of an anti-herpetic agent 9-(2-hydroxyethoxymethyl) guanine. Proc. Natl. Acad. Sci., USA 74, 5716–5720.PubMedCrossRefGoogle Scholar
  4. 4.
    Roizman, B. and Sears, A. E. (1987) An inquiry into the mechanisms of herpes simplex virus latency. Ann. Rev. Microhol. 41, 543–571.CrossRefGoogle Scholar
  5. 5.
    Latchman, D. S. (1990) Molecular biology of Herpes simplex virus latency. J. of Exp. Pathol 71, 133–141.Google Scholar
  6. 6.
    Vahlne, A., Svennerholm, B., and Lycke, E. (1979) Evidence of herpes simplex virus type-selective receptors on cellular plasma membranes. J. Gen. Virol. 44, 217–225.PubMedCrossRefGoogle Scholar
  7. 7.
    Morgan, C, Rose, W. M., and Mednis, B. (1968) Electron microscopy of herpes simplex virus I Entry. J. Vtrol. 2, 507–516.Google Scholar
  8. 8.
    Honess, R. W. and Roizman, B. (1974) Regulation of herpes virus macromolecular synthesis I. Cascade regulation of three groups of viral proteins. J. Virol. 14, 8–19.PubMedGoogle Scholar
  9. 9.
    Watson, R. J., Preston, C. M., and Clements, J. B. (1979) Separation and characterization of herpes simplex virus type I immediate-early mRNAs J. Virol. 31, 42–52.PubMedGoogle Scholar
  10. 10.
    Campbell, M. E. M., Palfreyman, J. W., and Preston, C. M. (1984) Identification of Herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate-early transcription. J. Mol. Btol. 180, 1–19.CrossRefGoogle Scholar
  11. 11.
    O’Hare, P. and Coding, C. R. (1988) Herpes simplex virus regulatory elements and the immunoglobuhn octamer domain bind a common factor and are both targets for virion transactivation Cell 52, 435–445.PubMedCrossRefGoogle Scholar
  12. 12.
    Pereira, L., Wolff, M. H., Fenwick, M., and Roizman, B. (1977) Regulation of herpes virus macromolecular synthesis V. Properties of alpha polypeptides made in HSV-1 and HSV-2 infected cells Virology 77, 733–749.PubMedCrossRefGoogle Scholar
  13. 13.
    Preston, C. M. (1979) Control of Herpes simplex virus Type 1 inRNA synthesis in cells infected with wild-type virus or the temperature sensitive mutant tsk. J. Virol. 29, 275–285.PubMedGoogle Scholar
  14. 14.
    Sears, A. E., Halliburton, I. W., Meignier, B., Silver, S., and Roizman, B. (1985) Herpes simplex virus type 1 mutant deleted in the a 22 gene: Growth and gene expression in permissive and restrictive cells and establishment of latency in mice. J. Virol 55, 338–346.PubMedGoogle Scholar
  15. 15.
    Sacks, W. R., Greene, C. C, Aschman, D. P., and Schaffer P. A. (1985) Herpes simplex virus type 1ICP27 is an essential regulatory protein. J. Vtrol. 55, 796–805.Google Scholar
  16. 16.
    Stow, N. D. and Stow, E. C. (1986) Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediateearly polypeptide Vmwl 10. J. Gen. Vvrol. 67, 2571–2585.CrossRefGoogle Scholar
  17. 17.
    Dubbs, D. R. and Kit, S. (1964) Mutant strains of herpes simplex virus deficient in thymidine kmase-inducing activity. Virology 22, 493–502PubMedCrossRefGoogle Scholar
  18. 18.
    Holland, L. E., Anderson, K P., Shipman, C, and Wagner, E. K. (1980) Viral DNA synthesis is required for the efficient expression of specific herpes simplex virus type 1 mRNA species. Virology 101, 10–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Poffenberger, K. L. and Roizman, B. (1985) Studies on a non-inverting genome of a viable herpes simplex virus. J.. Vtrol 53, 589–595.Google Scholar
  20. 20.
    Vlazny, D. A. and Frenkel, N. (1981) Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Prvc. Natl. Acad. Sci., USA 78, 742–746.CrossRefGoogle Scholar
  21. 21.
    Spaete, R. R. and Frenkel, N. (1982) The herpes simplex virus amplicon: A new eukaryotic defective-virus cloning-amplifying vector. Cell 30, 295–304.PubMedCrossRefGoogle Scholar
  22. 22.
    Stow, N. D., Murray, M. D., and Stow, E. L. (1986) Cis-acting signals involved in the replication and packaging of herpes simplex virus type-1 DNA. Cancer Cells 4,497–507.Google Scholar
  23. 23.
    Jacob, R. J., Morse, L. S., and Roizman, B. (1979) Anatomy of herpes simplex virus DNA XII. Accumulation of head to tail concatamers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. J. Virol. 29, 448–457.PubMedGoogle Scholar
  24. 24.
    Mocarski, E. S. and Roizman, B. (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of vinon DNA. Cell 31, 89–97.PubMedCrossRefGoogle Scholar
  25. 25.
    Deiss, L. P. and Frenkel, N. (1986) Herpes simplex virus amplicon: Cleavage of concatameric DNA is linked to packaging and involves amplification of the terminally reitreated a sequence. J. Virol. 57, 933–941.PubMedGoogle Scholar
  26. 26.
    Roizman, B. and Jenkins, F. J. (1985) Genetic engineering of novel genomes of large DNA viruses. Snmce 229, 1208–1214.Google Scholar
  27. 27.
    Sheldrick, P., Laithier, M., Lando, D., and Ryhner, M. L. (1973) Infectious DNA from herpes simplex virus: Infectivity of double stranded and single stranded molecules. Proc. Natl. Acad Sci., USA 70, 3621–3625.PubMedCrossRefGoogle Scholar
  28. 28.
    Brown, S. M., Ritchie, D. A., and Subak-Sharpe, J. H. (1973) Geneuc studies with herpes simplex virus type 1. J. Gen. Virol. 18, 329–346.PubMedCrossRefGoogle Scholar
  29. 29.
    Tackney, C, Cachianes, G., and Silverstein, S. (1984) Transduction of the Chinese hamster ovary aprt gene by herpes simplex virus J.Virol. 52, 606–614.PubMedGoogle Scholar
  30. 30.
    Stenberg, R. and Pizer, L. I. (1982) Herpes simplex virus-induced changes in cellular and adenovirus RNA metabolism in an adenovirus-type 5 transformed human cell line. J. Vtrol. 42, 474–487.Google Scholar
  31. 31.
    Kemp, L. M. and Latchman, D. S. (1988) Induction and repression of cellular gene transcription during herpes simplex virus infection are mediated by different viral immediate-early gene products. Eur. J. Biochem. 174, 443–449.PubMedCrossRefGoogle Scholar
  32. 32.
    Shih, N. T., Arsenakis, M., Tiollias, P., and Roizman, B. (1984) Expression of hepatitis B virus S gene by herpes simplex virus alpha and beta regulated gene chimaeras. Proc. Natl. Acad. Sci., USA 81, 5867–5870.PubMedCrossRefGoogle Scholar
  33. 33.
    Whealy, M. E., Baumeister, K., Robbins, A. K., and Enquist, L. W. (1988) A herpes virus vector for expression of glycosylated membrane antigens: Fusion proteins of pseudorabies virus gill and human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 62, 4185–4194.PubMedGoogle Scholar
  34. 34.
    Desrasiers, R. C, Kamine, J., Bakker, A., Silva, D., Woychick, R. P., Sakai, D. D., and Rottman, F. M. (1985) Synthesis of bovine growth hormone in primates by using an herpesvirus vector. Mol Cell Biol. 5, 2796–2803.Google Scholar
  35. 35.
    Frenkel, N. (1981) Defective interfering herpesvirus, in The Human Herpesvmises-An Interdisciplinary Prospective (Nahmias A. J., Dawdle, W. R., and Schinazy, R. S., eds.), Elsevier, New York, pp. 91–120.Google Scholar
  36. 36.
    Kwong, A. D. and Frenkel, N. (1985) The herpes simplex virus amphcon IV: Efficient expression of a chimenc chicken ovalbumin gene amplified within defective virus genomes. Virology 142, 421–125.PubMedCrossRefGoogle Scholar
  37. 37.
    Geller, A. I. and Breakfield, X. O. (1988) A defective HSV-1 vector expresses Eschenchia coh beta-galactosidase in cultured peripheral neurons. Science 241, 1667–1669.PubMedCrossRefGoogle Scholar
  38. 38.
    Gorman, C. M. (1985) High efficiency gene transfer into mammalian cells, in DNA Cloning, (Glover, D. M., ed.) Vol 2, IRL, Oxford, pp. 143–190.Google Scholar
  39. 39.
    MacPherson, I. and Stoker, M. (1962) Polyoma transformation of hamster cell clones—an investigation of the genetic factors affecting cell competence. Virology 16, 147–151.PubMedCrossRefGoogle Scholar
  40. 40.
    Smith, K. O., Kennel, W. L, and Lamn, D. L. (1981) Visualization of minute centres ofviral infection in unfixed cell cultures by an enzyme linked antibody assay. J. Immnol Methods 40, 294–305.Google Scholar
  41. 41.
    Holland, T. C, Sandri-Goldin R. M., Holland, S. E., Marlin, S. D., Levine, M., and Glonoso, J. C. (1983) Physical mapping of the mutauon in an anugenic variant of herpes simplex virus type 1 by use of an immunoreactive plaque assay. J Virol 46, 649–652.PubMedGoogle Scholar
  42. 42.
    Palella, T. D., Silverman, L. J., Schroll, C. T., Homa, F. L., Levine, M., and Kelley, W. N. (1988) Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyl transferase gene transfer into neuronal cells. Mol. Cell Biol. 8, 457–460.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc., Clifton, NJ 1991

Authors and Affiliations

  • David S. Latchman
    • 1
  1. 1.Medical Molecular Biology UnitUniversity College and Middlesex School of MedicineLondonUK

Personalised recommendations