Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Theoreticians have been trying to predict protein structure based on sequence information for decades. Literally, more than a quarter century ago, there were optimistic reports that one could use simulation methods to calculate the structure of a small protein given only its sequence (xc1|1,2). To this day, devotees of this approach persevere and may ultimately win over the problems with force fields and the enormous search space. In the meantime, a class of protein structure methods have developed, traveling under names such as “protein threading” and “fold recognition.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levitt, M. (1975) Computer simulation of protein folding. Nature 253, 694–698.

    Article  PubMed  CAS  Google Scholar 

  2. Levitt, M. (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104, 59–107.

    Article  PubMed  CAS  Google Scholar 

  3. Crippen, G. M. and Maiorov, V. N. (1995) How many protein-folding motifs are there? J. Mol. Biol. 252, 144–151.

    Article  PubMed  CAS  Google Scholar 

  4. Leonov, H., Mitchell, J. S. B., and Arkin, I. T. (2003) Monte Carlo estimation of the number of possible protein folds: effects of sampling bias and folds distributions. Proteins 51, 352–359.

    Article  PubMed  CAS  Google Scholar 

  5. Wolf, Y. I., Grishin, N. V., and Koonin, E. V. (2000) Estimating the number of protein folds and families from complete genome data. J. Mol. Biol. 299, 897–905.

    Article  PubMed  CAS  Google Scholar 

  6. Govindarajan, S., Recabarren, R., and Goldstein, R. K. (1999) Estimating the total number of protein folds. Proteins 35, 408–414.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, C. O. and DeLisi, C. (1998) Estimating the number of protein folds. J. Mol. Biol. 284, 1301–1305.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Z. X. (1998) A re-estimation for the total numbers of protein folds and superfamilies. Protein Eng. 11, 621–626.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, C. T. (1997) Relations of the numbers of protein sequences, families and folds. Protein Eng. 10, 757–761.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, Z. X. (1996) How many fold types of protein are there in nature? Proteins 26, 186–191.

    Article  PubMed  CAS  Google Scholar 

  11. Orengo, C. A., Jones, D. T., and Thornton, J.M. (1994) Protein superfamilies and domain superfolds. Nature 372, 631–634.

    Article  PubMed  CAS  Google Scholar 

  12. Chothia, C. (1992) Proteins-1000 families for the molecular biologist. Nature 357, 543–544.

    Article  PubMed  CAS  Google Scholar 

  13. England, J. L., Shakhnovich, B. E., and Shakhnovich, E. I. (2003) Natural selection of more designable folds: a mechanism for thermophilic adaptation. Proc. Natl. Acad. Sci. USA 100, 8727–8731.

    Article  PubMed  CAS  Google Scholar 

  14. Li, H., Tang, C., and Wingreen, N. S. (2002) Designability of protein structures: a latticemodel study using the Miyazawa-Jernigan matrix. Proteins 49, 403–412.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, J., Zeng, C., Wingreen, N. S., and Tang, C. (2002) Emergence of highly designable protein-backbone conformations in an off-lattice model. Proteins 47, 506–512.

    Article  PubMed  CAS  Google Scholar 

  16. Helling, R., Li, H., Melin, R., et al. (2001) The designability of protein structures. J. Mol. Graph. Mod. 19, 157–167.

    Article  CAS  Google Scholar 

  17. Shahrezaei, V. and Ejtehadi, M. R. (2000) Geometry selects highly designable structures. J. Chem. Phys. 113, 6437–6442.

    Article  CAS  Google Scholar 

  18. Bornberg-Bauer, E. (1997) How are model protein structures distributed in sequence space? Biophys. J. 73, 2393–2403.

    Article  PubMed  CAS  Google Scholar 

  19. Govindarajan, S. and Goldstein, R. A. (1996) Why are some protein structures so common? Proc. Natl. Acad. Sci. USA 93, 3341–3345.

    Article  PubMed  CAS  Google Scholar 

  20. Orengo, C. (1994) Classification of protein folds. Curr. Opin. Struct. Biol. 4, 429–440.

    Article  CAS  Google Scholar 

  21. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  22. Brenner, S. E., Chothia, C., and Hubbard, T. J. P. (1998) Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA 95, 6073–6078.

    Article  PubMed  CAS  Google Scholar 

  23. Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94.

    Article  PubMed  CAS  Google Scholar 

  24. Pearson, W. and Lipman, D. (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    PubMed  CAS  Google Scholar 

  26. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  27. Madej, T., Gibrat, J. F., and Bryant, S. H. (1995) Threading a database of protein cores. Proteins 23, 356–369.

    Article  PubMed  CAS  Google Scholar 

  28. Huber, T. and Torda, A. E. (2002) Protein structure prediction by threading: force field philosophy, approaches to alignment. In Tsigelny, I. F.] (ed.), Protein Structure Prediction: A Bioinformatic Approach, International University Line, La Jolla, pp. 263–

    Google Scholar 

  29. Cornell, W. D., Cieplak, P., Bayly, C. I., et al. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  30. van Gunsteren, W. F., Billeter, S. R., Eising, A. A., et al. (1996) Biomolecular simulation: the GROMOS96 manual and user guide, vdf Hochschulverlag AG an der ETH Zurich and BIOMOS b.v., Zurich and Groningen.

    Google Scholar 

  31. MacKerell, A. D., Bashford, D., Bellott, M., et al. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.

    Article  CAS  Google Scholar 

  32. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM-a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  33. Chandler, D. (1987) Introduction to Modern Statistical Mechanics, Oxford University Press, New York.

    Google Scholar 

  34. Miyazawa, S. and Jernigan, R. L. (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552.

    Article  CAS  Google Scholar 

  35. Tanaka, S. and Scheraga, H. A. (1976) Statistical mechanical treatment of protein conformation. 1. Conformational properties of amino-acids in proteins. Macromolecules 9, 142–159.

    Article  PubMed  CAS  Google Scholar 

  36. Sippl, M. J. (1993) Boltzmann’s principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures. J. Comput. Aided Mol. Des. 7,473–501.

    Article  PubMed  CAS  Google Scholar 

  37. Jones, D. T., Taylor, W. R., and Thornton, J. M. (1992) A new approach to protein fold recognition. Nature 358, 86–99.

    Article  PubMed  CAS  Google Scholar 

  38. Skolnick, J., Jaroszewski, L., Kolinski, A., and Godzik, A. (1997) Derivation and testing of pair potentials for protein folding. When is the quasichemical approximation correct? Protein Sci. 6, 676–688.

    Article  PubMed  CAS  Google Scholar 

  39. Ben-Naim, A. (1997) Statistical potentials extracted from protein structures: are these meaningful potentials? J. Chem. Phys. 107, 3698–3706.

    Article  CAS  Google Scholar 

  40. Thomas, P. D. and Dill, K. (1996) Statistical potentials extracted from protein structures: how accurate are they? J. Mol. Biol. 257, 457–469.

    Article  PubMed  CAS  Google Scholar 

  41. Sippl, M. J. (1996) Helmholtz free energy of peptide hydrogen bonds in proteins. J. Mol. Biol. 260, 644–8.

    Article  PubMed  CAS  Google Scholar 

  42. Sippl, M. J., Ortner, M., Jaritz, M., Lackner, P., and Flockner, H. (1996) Helmholtz free energies of atom pair interactions in proteins. Fold. Des. 1, 289–98.

    Article  PubMed  CAS  Google Scholar 

  43. Shortle, D. (2003) Propensities, probabilities, and the Boltzmann hypothesis. Protein Sci. 12, 1298–1302.

    Article  PubMed  CAS  Google Scholar 

  44. Crippen, G. M. and Snow, M. E. (1990) A 1.8 angstrom resolution potential function for protein folding. Biopolymers 29, 1479–1489.

    Article  PubMed  CAS  Google Scholar 

  45. Crippen, G. M. (1996) Easily searched protein folding potentials. J. Mol. Biol. 260, 467–75.

    Article  PubMed  CAS  Google Scholar 

  46. Goldstein, R. A., Luthey-Schulten, Z. A., and Wolynes, P. G. (1992) Protein tertiary structure recognition using optimized Hamiltonians with local interactions. Proc. Natl. Acad. Sci. USA 89, 9029–9033.

    Article  PubMed  CAS  Google Scholar 

  47. Maiorov, V. N. and Crippen, G. M. (1992) Contact potential that recognizes the correct folding of globular-proteins. J. Mol. Biol. 227, 876–888.

    Article  PubMed  CAS  Google Scholar 

  48. Seetharamulu, P. and Crippen, G. M. (1991) A potential function for protein folding. J. Math. Chem. 6, 91–110.

    Article  CAS  Google Scholar 

  49. Ulrich, P., Scott, W., van Gunsteren, W. F., and Torda, A. E. (1997) Protein structure prediction force fields-parametrization with quasi-Newtonian dynamics. Proteins 27, 367–384.

    Article  PubMed  CAS  Google Scholar 

  50. Huber, T. and Torda, A. E. (1998) Protein fold recognition without Boltzmann statistics or explicit physical basis. Protein Sci. 7, 142–149.

    Article  PubMed  CAS  Google Scholar 

  51. Hao, M. H. and Scheraga, H. A. (1996) How optimization of potential functions affects protein folding. Proc. Natl. Acad. Sci. USA 93, 4984–4989.

    Article  PubMed  CAS  Google Scholar 

  52. Mirny, L. A., and Shakhnovich, E. I. (1996) How to derive a protein folding potential-a new approach to an old problem. J. Mol. Biol. 264, 1164–1179.

    Article  PubMed  CAS  Google Scholar 

  53. Koretke, K. K., Luthey-Schulten, Z., and Wolynes, P. G. (1996) Self-consistently optimized statistical mechanical energy functions for sequence structure alignment. Protein Sci. 5, 1043–1059.

    Article  PubMed  CAS  Google Scholar 

  54. Lemer, C. M., Rooman, M. J., and Wodak, S. J. (1995) Protein structure prediction by threading methods: evaluation of current techniques. Proteins 23, 337–355.

    Article  PubMed  CAS  Google Scholar 

  55. Chang, J., Carrillo, M. W., Waugh, A., Wei, L. P., and Altman, R. B. (2002) Scoring functions sensitive to alignment error have a more difficult search: a paradox for threading. In: (eiEaton, G. R., Wiley, D. C., and Jardetzky, O., eds.) Structures and Mechanisms: From Ashes to Enzymes, vol. 827. Oxford University Press, Oxford, UK: 309–320.

    Chapter  Google Scholar 

  56. Lathrop, R. H. (1994) The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 7, 1059–1068.

    Article  PubMed  CAS  Google Scholar 

  57. Smith, T. F. and Waterman, M. S. (1981) Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197.

    Article  PubMed  CAS  Google Scholar 

  58. Needleman, S.B. and Wunsch, C. D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453.

    Article  PubMed  CAS  Google Scholar 

  59. Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P. (1983) Optimization by simulated annealing. Science 220, 671–680.

    Article  PubMed  CAS  Google Scholar 

  60. Bryant, S. H. and Lawrence, C. E. (1993) An empirical energy function for threading protein-sequence through the folding motif. Proteins 16, 92–112.

    Article  PubMed  CAS  Google Scholar 

  61. Wilmanns, M. and Eisenberg, D. (1995) Inverse protein folding by the residue pair preference profile method: estimating the correctness of alignments of structurally compatible sequences. Protein Eng. 8, 627–639.

    Article  PubMed  CAS  Google Scholar 

  62. Godzik, A., Kolinski, A., and Skolnick, J. (1992) Topology fingerprint approach to the inverse protein folding problem. J. Mol. Biol. 227, 227–238.

    Article  PubMed  CAS  Google Scholar 

  63. Taylor, W. R. (1997) Multiple sequence threading: an analysis of alignment quality and stability. J. Mol. Biol. 269, 902–943.

    Article  PubMed  CAS  Google Scholar 

  64. Huber, T. and Torda, A. E. (1999) Protein sequence threading, the alignment problem and a two step strategy. J. Comput. Chem. 20, 1455–1467.

    Article  CAS  Google Scholar 

  65. Xu, Y. and Xu, D. (2000) Protein threading using prospect: design and evaluation. Proteins 40, 343–354.

    Article  PubMed  CAS  Google Scholar 

  66. Lathrop, R. H. (1999) An anytime local-to-global optimization algorithm for protein threading in o(m(2)n(2)) space. J. Comput. Biol. 6, 405–418.

    Article  PubMed  CAS  Google Scholar 

  67. Xu, Y. and Uberbacher, E. C. (1996) A polynomial-time algorithm for a class of protein threading problems. Comput. Appl. Biosci. 12, 511–517.

    PubMed  CAS  Google Scholar 

  68. Lathrop, R. H. and Smith, T. F. (1996) Global optimum protein threading with gapped alignment and empirical pair score functions. J. Mol. Biol. 255, 641–665.

    Article  PubMed  CAS  Google Scholar 

  69. Xu, J. and Li, M. (2003) Assessment of RAPTOR’s linear programming approach in CAFASP3. Proteins 53, 579–584.

    Article  PubMed  CAS  Google Scholar 

  70. Crippen, G. M. (1996) Failures of inverse folding and threading with gapped alignment. Proteins 26, 167–171.

    Article  PubMed  CAS  Google Scholar 

  71. Park, B. H., Huang, E. S., and Levitt, M. (1997) Factors affecting the ability of energy functions to discriminate correct from incorrect folds. J. Mol. Biol. 266, 831–846.

    Article  PubMed  CAS  Google Scholar 

  72. Altschul, S. F., Boguski, M. S., Gish, W., and Wootton, J. C. (1994) Issues in searching molecular sequence databases. Nat. Genet. 6, 119–129.

    Article  PubMed  CAS  Google Scholar 

  73. Altschul, S. F. and Gish, W. (1996) Local alignment statistics. Methods Enzymol. 266, 460–480.

    Article  PubMed  CAS  Google Scholar 

  74. Karlin, S. and Altschul, S. F. (1990) Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Natl. Acad. Sci. USA 87, 2264–2268.

    Article  PubMed  CAS  Google Scholar 

  75. Pearson, W. R. (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276, 71–84.

    Article  PubMed  CAS  Google Scholar 

  76. Mott, R. (2000) Accurate formula for p-values of gapped local sequence and profile alignments. J. Mol. Biol. 300, 649–659.

    Article  PubMed  CAS  Google Scholar 

  77. Sommer, I., Zien, A., von Ohsen, N., Zimmer, R., and Lengauer, T. (2002) Confidence measures for protein fold recognition. Bioinformatics 18, 802–812.

    Article  PubMed  CAS  Google Scholar 

  78. Jones, D. T. (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797–815.

    Article  PubMed  CAS  Google Scholar 

  79. Juan, D., Grana, O., Pazos, F., Fariselli, P., Casadio, R., and Valencia, A. (2003) A neural network approach to evaluate fold recognition results. Proteins 50, 600–608.

    Article  PubMed  CAS  Google Scholar 

  80. Xu, Y., Xu, D., and Olman, V. (2002) A practical method for interpretation of threading scores: an application of neural network. Stat. Sin. 12, 159–177.

    Google Scholar 

  81. McGuffin, L. J. and Jones, D. T. (2003) Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874–881.

    Article  PubMed  CAS  Google Scholar 

  82. Karplus, K., Sjolander, K., Barrett, C., et al. (1997) Predicting protein structure using hidden Markov models. Proteins, 134–139.

    Google Scholar 

  83. Karplus, K., Barrett, C., and Hughey, R. (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14, 846–856.

    Article  PubMed  CAS  Google Scholar 

  84. Karplus, K., Barrett, C., Cline, M., Diekhans, M., Grate, L., and Hughey, R. (1999) Predicting protein structure using only sequence information. Proteins, 121–125.

    Google Scholar 

  85. Panchenko, A. R., Marchler-Bauer, A., and Bryant, S. H. (2000) Combination of threading potentials and sequence profiles improves fold recognition. J. Mol. Biol. 296, 1319–1331.

    Article  PubMed  CAS  Google Scholar 

  86. Russell, A. and Torda, A. E. (2002) Protein sequence threading-averaging over structures. Proteins 47, 496–505.

    Article  PubMed  CAS  Google Scholar 

  87. Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. E. (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520.

    Article  PubMed  CAS  Google Scholar 

  88. Fischer, D. and Eisenberg, D. (1996) Protein fold recognition using sequence-derived predictions. Protein Sci. 5, 947–955.

    Article  PubMed  CAS  Google Scholar 

  89. Russell, R. B., Copley, R. R., and Barton, G. J. (1996) Protein fold recognition by mapping predicted secondary structures. J. Mol. Biol. 259, 349–365.

    Article  PubMed  CAS  Google Scholar 

  90. Rost, B., Schneider, R., and Sander, C. (1997) Protein fold recognition by predictionbased threading. J. Mol. Biol. 270, 471–480.

    Article  PubMed  CAS  Google Scholar 

  91. Di Francesco, V., Munson, P. J., and Garnier, J. (1999) FORESST: fold recognition from secondary structure predictions of proteins. Bioinformatics 15, 131–140.

    Article  PubMed  CAS  Google Scholar 

  92. Ayers, D. J., Gooley, P. R., Widmer-Cooper, A., and Torda, A. E. (1999) Enhanced protein fold recognition using secondary structure information from NMR. Protein Sci. 8, 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  93. Hargbo, J. and Elofsson, A. (1999) Hidden Markov models that use predicted secondary structures for fold recognition. Proteins 36, 68–76.

    Article  PubMed  CAS  Google Scholar 

  94. Ota, M., Kawabata, T., Kinjo, A. R., and Nishikawa, K. (1999) Cooperative approach for the protein fold recognition. Proteins, 126–132.

    Google Scholar 

  95. Koretke, K. K., Russell, R. B., Copley, R. R., and Lupas, A. N. (1999) Fold recognition using sequence and secondary structure information. Proteins, 141–148.

    Google Scholar 

  96. Rost, B. and Liu, J. F. (2003) The PredictProtein server. Nucleic Acids Res. 31, 3300–3304.

    Article  PubMed  CAS  Google Scholar 

  97. Eyrich, V. A. and Rost, B. (2003) META-PP: single interface to crucial prediction servers. Nucleic Acids Res. 31, 3308–3310.

    Article  PubMed  CAS  Google Scholar 

  98. Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., et al. (2003) EVA: evaluation of protein structure prediction servers. Nucleic Acids Res. 31, 3311–3315.

    Article  PubMed  CAS  Google Scholar 

  99. Kim, D., Xu, D., Guo, J. T., Ellrott, K., and Xu, Y. (2003) PROSPECT II: protein structure prediction program for genome-scale applications. Protein Eng. 16, 641–650.

    Article  PubMed  CAS  Google Scholar 

  100. Lu, L., Lu, H., and Skolnick, J. (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein-protein interactions by multimeric threading. Proteins 49, 350–364.

    Article  PubMed  CAS  Google Scholar 

  101. McGuffin, L. J. and Jones, D. T. (2002) Targeting novel folds for structural genomics. Proteins 48, 44–52.

    Article  PubMed  CAS  Google Scholar 

  102. Jones, D. T. (2001) Predicting novel protein folds by using FRAGFOLD. Proteins, 127–132.

    Google Scholar 

  103. Skolnick, J., Kolinski, A., Kihara, D., Betancourt, M., Rotkiewicz, P., and Boniecki, M. (2001) Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement. Proteins, 149–156.

    Google Scholar 

  104. Zhang, Y., Kolinski, A., and Skolnick, J. (2003) TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys. J. 85, 1145–1164.

    Article  PubMed  CAS  Google Scholar 

  105. Kihara, D., Lu, H., Kolinski, A., and Skolnick, J. (2001) TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints. Proc. Natl. Acad. Sci. USA 98, 10,125-10,130.

    Article  Google Scholar 

  106. Lu, L., Arakaki, A. K., Lu, H., and Skolnick, J. (2003) Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. Genome Res. 13, 1146–1154.

    Article  PubMed  CAS  Google Scholar 

  107. Simons, K. T., Strauss, C., and Baker, D. (2001) Prospects for ab initio protein structural genomics. J. Mol. Biol. 306, 1191–1199.

    Article  PubMed  CAS  Google Scholar 

  108. Simons, K. T., Kooperberg, C., Huang, E., and Baker, D. (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225.

    Article  PubMed  CAS  Google Scholar 

  109. Chivian, D., Robertson, T., Bonneau, R., and Baker, D. (2003) Ab initio methods. In: (eiBourne, P. E., and Weissig, H., eds.) Structural Bioinformatics vol. 44. Wiley-Liss, Hoboken, NJ: 547–548.

    Google Scholar 

  110. Bonneau, R. and Baker, D. (2001) Ab initio protein structure prediction: progress and reports. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Torda, A.E. (2005). Protein Threading. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:921

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:921

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics