Skip to main content

How to Use Protein 1- D Structure Predicted by PROFphd

  • Protocol
The Proteomics Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The abbreviations used in this chapter are as follows:

  • â„¢ 1-D structure: one-dimensional structure, i.e., any structural feature that describes single residues, such as protein sequence or string of secondary structure and solvent accessibil- ity assignments per residue.

  • â„¢ 3-D structure: three-dimensional coordinates of protein structure.

  • â„¢ EVA: server automatically evaluating structure prediction methods (1– 3).

  • â„¢ META-PP: Internet service allowing access to a variety of bioinformatics tools through a single interface (4).

  • â„¢ PDB: Protein Data Bank of experimentally determined 3-D structures of proteins (5).

  • â„¢ PHDhtm: profile-based neural network prediction of transmembrane helices (6– 8).

  • â„¢ PHDpsi: divergent profile (PSI-BLAST) based neural network prediction (9).

  • â„¢ PP (PredictProtein): Internet server for protein sequence analysis and protein structure prediction (7,10,11).

  • â„¢ PROFphd: advanced profile-based neural network prediction of secondary structure (PROFsec) and solvent accessibility (PROFacc) (11).

  • â„¢ SWISS-PROT: data base of protein sequences (12).

  • â„¢ Notations used:

  • â„¢ Secondary structure: H = helix; E = strand; L = other.

  • â„¢ Solvent accessibility: e = exposed (≥16% relative accessible surface); b = buried (<16%).

  • â„¢ Transmembrane helices: T = transmembrane; N = globular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eyrich, V., Marti-Renom, M. A., Przybylski, D., et al. (2001) EVA: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 17, 1242–1243.

    PubMed  CAS  Google Scholar 

  2. Eyrich, V. A., Koh, I. Y. Y., Przybylski, D., et al. (2003) CAFASP3 in the spotlight of EVA. Proteins 53Suppl 6, 548–560.

    PubMed  CAS  Google Scholar 

  3. Koh, I. Y. Y., Eyrich, V. A., Marti-Renom, M. A., et al. (2003) EVA: evaluation of protein structure prediction servers. Nucl. Acids Res. 31, 3311–3315.

    PubMed  CAS  Google Scholar 

  4. Eyrich, V. A. and Rost, B. (2003) META-PP: single interface to crucial prediction servers. Nucl. Acids Res. 31, 3308–3310.

    PubMed  CAS  Google Scholar 

  5. Berman, H. M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucl. Acids Res. 28, 235–242.

    PubMed  CAS  Google Scholar 

  6. Rost B, Casadio, R., Fariselli, P., and Sander, C. (1995) Prediction of helical transmembrane segments at 95% accuracy. Prot. Sci. 4, 521–533.

    CAS  Google Scholar 

  7. Rost, B. (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Meth. Enzymol. 266, 525–539.

    PubMed  CAS  Google Scholar 

  8. Rost B, Casadio, R., and Fariselli, P. (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Prot. Sci. 5, 1704–1718.

    CAS  Google Scholar 

  9. Przybylski, D. and Rost, B. (2002) Alignments grow, secondary structure prediction improves. Proteins 46, 195–205.

    Google Scholar 

  10. Rost B, Sander, C., and Schneider, R. (1994) PHD-an automatic server for protein secondary structure prediction. CABIOS 10, 53–60.

    PubMed  CAS  Google Scholar 

  11. Rost, B. (2000) PredictProtein-internet prediction service. Columbia University, New York.

    Google Scholar 

  12. Bairoch, A. and Apweiler, R. (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucl. Acids Res. 28, 45–48.

    PubMed  CAS  Google Scholar 

  13. Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science 181, 223–230.

    PubMed  CAS  Google Scholar 

  14. Gottesman, M. E. and Hendrickson, W. A. (2000) Protein folding and unfolding by Escherichia coli chaperones and chaperonins. Curr. Opin. Microbiol. 3, 197–202.

    PubMed  CAS  Google Scholar 

  15. Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647.

    PubMed  CAS  Google Scholar 

  16. Dobson, C. M. and Karplus, M. (1999) The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Str. Biol. 9, 92–101.

    CAS  Google Scholar 

  17. Wales, D. J. and Scheraga, H. A. (1999) Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372.

    PubMed  CAS  Google Scholar 

  18. Levitt, M. and Warshel, A. (1975) Computer simulation of protein folding. Nature 253, 694–698.

    PubMed  CAS  Google Scholar 

  19. Hagler, A. T. and Honig, B. (1978) On the formation of protein tertiary structure on a computer. Proc. Natl. Acad. Sci. USA 75, 554–558.

    PubMed  CAS  Google Scholar 

  20. vanGunsteren, W. F. (1993) Molecular dynamics studies of proteins. Curr. Opin. Str. Biol. 3, 167–174.

    Google Scholar 

  21. Hansson, T., Oostenbrink, C., and vanGunsteren, W. (2002) Molecular dynamics simula-tions. Curr. Opin. Str. Biol. 12, 190–196.

    CAS  Google Scholar 

  22. Koretke, K. K., Russell, R. and Lupas, A. N. (2001) Fold recognition from sequence comparisons. Proteins 45, 68–75.

    Google Scholar 

  23. Bystroff, and Shao, Y. (2002) Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics 18, S54–S61.

    PubMed  Google Scholar 

  24. Srinivasan, R. and Rose, G. D. (2002) Ab initio prediction of protein structure using LINUS. Proteins 47, 489–495.

    PubMed  CAS  Google Scholar 

  25. Baker, D. and Sali, A. (2001) Protein structure prediction and structural genomics. Science 294, 93–96.

    PubMed  CAS  Google Scholar 

  26. Tramontano, A., Leplae, R., and Morea, V. (2001) Analysis and assessment of comparative modeling predictions in CASP4. Proteins Suppl. 5, 22–38.

    Google Scholar 

  27. Heringa, J. (2000) Computational methods for protein secondary structure prediction using multiple sequence alignments. Curr. Protein Pept. Sci. 1, 273–301.

    PubMed  CAS  Google Scholar 

  28. Jones, D. T. (2000) Protein structure prediction in the postgenomic era. Curr. Opin. Str. Biol. 10, 371–379.

    CAS  Google Scholar 

  29. Bonneau, R. and Baker, D. (2001) Ab initio protein structure prediction: progress and prospects. Annu. Rev. Biophys. Biomol. Struct. 30, 173–189.

    PubMed  CAS  Google Scholar 

  30. Rost, B. (2001) Protein secondary structure prediction continues to rise. J. Struct. Biol. 134, 204–218.

    PubMed  CAS  Google Scholar 

  31. Chen, P. and Rost, B. (2002) State-of-the-art in membrane prediction. Appl. Bioinf. 1, 21–35.

    CAS  Google Scholar 

  32. Ackerman, J., Harnett, M. M., Harnett, W., Kelly, S. M., Svergun, D. I., and Byron, O. (2003) 19 angstrom solution structure of the filarial nematode immunomodulatory protein, ES-62. Biophys. J. 84, 489–500.

    PubMed  CAS  Google Scholar 

  33. Alexandre, G. and Zhulin, I. B. (2003) Different evolutionary constraints on chernotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. J. Bacteriol. 185, 544–552.

    PubMed  CAS  Google Scholar 

  34. Aravind, L. and Anantharaman, V. (2003) HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiol. Lett. 222, 17–23.

    PubMed  CAS  Google Scholar 

  35. Balsera, M., Arellano, J. B. Gutierrez, J. R., Heredia, P., Revuelta, J. L., and De las Rivas, J. (2003) Structural analysis of the PsbQ protein of photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods. Biochem. 42, 1000–1007.

    CAS  Google Scholar 

  36. Bienstock, R. J., Skorvaga, M., Mandavilli, B. S., and VanHouten, B. (2003) Structural and functional characterization of the human DNA repair helicase XPD by comparative molecular modeling and site-directed mutagenesis of the bacterial repair protein UvrB. J. Biol. Chem. 278, 5309–5316.

    PubMed  CAS  Google Scholar 

  37. Bon, S., Ayon, A., Leroy, J., and Massoulie, J. (2003) Trimerization domain of the collagen tail of acetylcholinesterase. Neurochem. Res. 28, 523–535.

    PubMed  CAS  Google Scholar 

  38. Bonifati, V., Rizzu, P., van Baren, et al. (2003)Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.

    PubMed  CAS  Google Scholar 

  39. Cachot, J., Bultelle, F., Drouot, L., et al. (2003) Molecular cloning of flounder Xp18, a newly identified highly conserved protein mainly expressed in the ovary. Gene 307,13–21.

    PubMed  CAS  Google Scholar 

  40. Campbell, J. D., Biggin, P. C., Baaden, M., and Sansom, M. S. P. (2003) Extending the structure of an ABC transporter to atomic resolution: Modeling and simulation studies of MsbA. Biochem. 42, 3666–3673.

    CAS  Google Scholar 

  41. Carbone, M. A. and Robinson, B. H. (2003) Expression and characterization of a human pyruvate carboxylase variant by retroviral gene transfer. Biochem. J. 370, 275–282.

    PubMed  CAS  Google Scholar 

  42. Cavalcanti, A. R. O., Ferreira, R., Gu, Z. L., and Li, W. H. (2003) Patterns of gene duplication in Saccharomyces cerevisiae and Caenorhabditis elegans. J. Mol. Evol. 56, 28–37.

    PubMed  CAS  Google Scholar 

  43. Chereau, D., Kodandapani, L., Tomaselli, K. J., Spada, A. P., and Wu, J. (2003) Structural and functional analysis of caspase active sites. Biochem. 42, 4151–4160.

    CAS  Google Scholar 

  44. Coffman, B. L., Kearney, W. R., Goldsmith, S., Knosp, B. M., and Tephly, T. R. (2003) Opioids bind to the amino acids 84 to 118 of UDP-glucuronosyltransferase UGT2B7. Molec. Pharmacol. 63, 283–288.

    CAS  Google Scholar 

  45. Cordes, F. S., Komoriya, K., Larquet, E., et al. (2003) Helical structure of the needle of the type III secretion system of Shigella flexneri. J. Biol. Chem. 278, 17,103–17,107.

    PubMed  CAS  Google Scholar 

  46. da Fonseca, P.C.A., Morris, S. A., Nerou, E. P., Taylor, W., and Morris, E. P. (2003) Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. Proc. Natl. Acad. Sci. USA 100, 3936–3941.

    PubMed  Google Scholar 

  47. Desai, P., Akpa J. C., and Person, S. (2003) Residues of VP26 of herpes simplex virus type 1 that are required for its interaction with capsids. J. Virol. 77, 391–404.

    PubMed  CAS  Google Scholar 

  48. Genevrois, S., Steeghs, L., Roholl, P., Letesson, J. J., and van der Ley, P. (2003) The Omp85 protein of Neisseria meningitides is required for lipid export to the outer mem-brane. EMBO J. 22, 1780–1789.

    PubMed  CAS  Google Scholar 

  49. Grailles, M., Brey, P. T., and Roth, W. (2003) The Drosophila melanogaster multidrugresistance protein 1 (MRP1) homolog has a novel gene structure containing two variable internal exons. Gene 307, 41–50.

    PubMed  CAS  Google Scholar 

  50. Huang, Y. P. J., Swapna, G. V. T., Rajan, P. et al. (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J. Mol. Biol. 327, 521–536.

    PubMed  CAS  Google Scholar 

  51. Huiskonen, J. T., Laakkonen, L., Toropainen, M., Sarvas, M., Bamford, D. H., and Bamford, J. (2003) Probing the ability of the coat and vertex protein of the mem-brane-containing bacteriophage PRD1 to display a meningococcal epitope. Virology 310, 267–279.

    PubMed  CAS  Google Scholar 

  52. Jin, W. Z., Kambara, O., Sasakawa, H., Tamura, A., and Takada, S. (2003) De novo design of foldable proteins with smooth folding funnel: automated negative design and experi-mental verification. Structure 11, 581–590.

    PubMed  CAS  Google Scholar 

  53. Juo, Z. S., Kassavetis, G. A., Wang, J. M., Geiduschek, E. P., and Sigler, P. B. (2003) Crystal structure of a transcription factor IIIB core interface ternary complex. Nature 422, 534–539.

    PubMed  CAS  Google Scholar 

  54. Kamada, K., Roeder, R. G., and Burley, S. K. (2003) Molecular mechanism of recruitment of TFIIF-associating RNA polymerase C-terminal domain phosphatase (FCP1) by transcription factor IIF. Proc. Natl. Acad. Sci. USA 100, 2296–2299.

    PubMed  CAS  Google Scholar 

  55. Kao, M. C., Di Bernardo, S., Matsuno-Yagi, A., and Yagi, T. (2003) Characterization and topology of the membrane domain Nqo10 subunit of the protontranslocating NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochem. 42, 4534–45

    CAS  Google Scholar 

  56. Kloetzel, J. A., Baroin-Tourancheau, A., Miceli, C., et al. (2003) Cytoskeletal proteins with N-terminal signal peptides: plateins in the ciliate Euplotes define a new family of articulins. J. Cell Sci. 116, 1291–1303.

    PubMed  CAS  Google Scholar 

  57. Mahdi, A. A., Briggs, G. S., Sharples, G. J., Wen, Q., and Lloyd, R. G. (2003) A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J. 22, 724–734.

    PubMed  CAS  Google Scholar 

  58. Maraver, A., Ona, A., Abaitua, F., et al. (2003) The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J. Virol. 77, 6438–6449.

    PubMed  CAS  Google Scholar 

  59. Nam, Y., Weng, A. P., Aster, J. C., and Blacklow, S. (2003)Structural requirements for assembly of the CSL center dot Intracellular Notch 1 center dot Mastermind-like 1 transcriptional activation complex. J. Biol. Chem. 278, 21,232–21,239.

    PubMed  CAS  Google Scholar 

  60. Orlova, E. V., Gowen, Droge, A., et al. (2003) Structure of a viral DNA gatekeeper at 10 angstrom resolution by cryo-electron microscopy. EMBO J. 22, 1255–1262.

    PubMed  CAS  Google Scholar 

  61. Payne, J. A., Rivera, C., Voipio, J., and Kaila, K. (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends in Neurosciences 26, 199–206.

    PubMed  CAS  Google Scholar 

  62. Pfannenschmid, F., Wimmer, V. C., Rios, R. M., et al. (2003) Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division. J. Cell Sci. 116, 1449–1462.

    PubMed  CAS  Google Scholar 

  63. Rahaman, A., Srinivasan, N., Shamala, N., and Shaila, M. S. (2003) The fusion core complex of the Peste des petits ruminants virus is a six-helix bundle assembly. Biochem. 42, 922–931.

    CAS  Google Scholar 

  64. Sheu, J. J. C., Cheng, T., Chen, H. Y., Lim, C., and Chang, T. W. (2003) Comparative effects of human Ig alpha and Ig beta in inducing autoreactive antibodies against B cells in mice. J. Immunol. 170, 1158–1166.

    PubMed  CAS  Google Scholar 

  65. van de Vosse, E., Lichtenauer-Kaligis, E. G. R., van Dissel, J. T., and Ottenhoff, T. H. M. (2003) Genetic variations in the interleukin-12/interleukin-23 receptor (beta 1) chain, and implications for IL-12 and IL-23 receptor structure and function. Immunogenetics 54, 817–829.

    PubMed  Google Scholar 

  66. van Swieten, J. C., Brusse, E., de Graaf, B. M., et al. (2003) A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebral ataxia. Am. J. Hum. Genet. 72, 191–199.

    PubMed  Google Scholar 

  67. Zemojtel, T., Scheele, J. S., Martasek, P., Masters, B. S. S., Sharma, V. S., and Magde, D. (2003) Role of the interdomain linker probed by kinetics of CO ligation to an endothelial nitric oxide synthase mutant lacking the calmodulin binding peptide (residues 503-517 in bovine) Biochem. 42, 6500–6506.

    CAS  Google Scholar 

  68. Zhang, Y., Corver, J., Chipman, P. R., et al. (2003) Structures of immature flavivirus particles. EMBO J. 22, 2604–2613.

    PubMed  CAS  Google Scholar 

  69. Zhulin, I. B. Nikolskaya, A. N., and Galperin, M. Y. (2003) Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in Bacteria and Archaea. J. Bacteriol. 185, 285–294.

    PubMed  CAS  Google Scholar 

  70. Braig, K., Otwinowski, Z., Hegde, R., et al. (1994) The crystal structure of the GroES co-chaperonin at 2.8 Å. Nature 371, 578–586.

    PubMed  CAS  Google Scholar 

  71. Ng, P., Henikoff, J., and Henikoff, S. (2000) PHAT: a transmembrane-specific substitu-tion matrix. Bioinformatics 16, 760–766.

    PubMed  CAS  Google Scholar 

  72. Rost, B. and Sander, C. (1993) Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599.

    PubMed  CAS  Google Scholar 

  73. Rost, B. and Sander, C. (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72.

    PubMed  CAS  Google Scholar 

  74. Rost, B. and Sander, C. (1994) Conservation and prediction of solvent accessibility in protein families. Proteins 20, 216–226.

    PubMed  CAS  Google Scholar 

  75. Rost, B. and Eyrich, V. (2001) EVA: large-scale analysis of secondary structure predic-tion. Proteins 45 Suppl 5, S192–S199.

    Google Scholar 

  76. Rost, B. (2003) Prediction in 1D: secondary structure, membrane helices, and accessibil-ity. Methods Biochem. Anal. 44, 559–587.

    PubMed  CAS  Google Scholar 

  77. Rost, B. and Liu, J. (2003) The PredictProtein server. Nucl. Acids Res. 31, 3300–3304.

    PubMed  CAS  Google Scholar 

  78. Altschul, S., Madden, T., Shaffer, A., et al. (1997) Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402.

    PubMed  CAS  Google Scholar 

  79. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577–2637.

    PubMed  CAS  Google Scholar 

  80. Connolly, M. L. (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713.

    PubMed  CAS  Google Scholar 

  81. Chen, P. and Rost, B. (2002)Long membrane helices and short loops predicted less accurately. Prot. Sci. 2766–2773.

    Google Scholar 

  82. Rost, B. Casadio, R., and Fariselli, P. (1996) Fourth International Conference on Intelli-gent Systems for Molecular Biology, St. Louis, MO.

    Google Scholar 

  83. Chen, C. P., Kernytsky, A., and Rost, B. (2002) Transmembrane helix predictions revis-ited. Prot. Sci. 11, 2774–2791.

    CAS  Google Scholar 

  84. vonHeijne, G. (1994) Membrane proteins: from sequence to structure. Annu. Rev. Biophys. Biomol. Struct. 23, 167–192.

    Google Scholar 

  85. Prusiner, S. B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95, 13,363–13,383.

    PubMed  CAS  Google Scholar 

  86. Prusiner, S. Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology. Cell 93, 337–348.

    PubMed  CAS  Google Scholar 

  87. Harrison, P. M., Bamborough, P., Daggett, V., Prusiner, S., and Cohen, F. E. (1997) The prion folding problem. Curr. Opin. Str. Biol. 7, 53–59.

    CAS  Google Scholar 

  88. Cohen, F. E. and Prusiner, S. B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67,793–819.

    PubMed  CAS  Google Scholar 

  89. Donne, D. G., Viles, J. H., Groth, D., et al. (1997) Structure of the recombinant fulllength hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc. Natl. Acad. Sci. USA 94, 13,452–13,457.

    PubMed  CAS  Google Scholar 

  90. James, T. L., Liu, H., Ulyanov, N. et al. (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 10,086–10,091.

    PubMed  CAS  Google Scholar 

  91. Kallberg, Y., Gustafsson, M., Persson, Thyberg, J., and Johansson, J. (2001) Predic-tion of amyloid fibril-forming proteins. J. Biol. Chem. 276, 12,945–12,950.

    PubMed  CAS  Google Scholar 

  92. Wuthrich, K. and Riek, R. (2001) Three-dimensional structures of prion proteins. Adv. Protein Chem. 57, 55–82.

    PubMed  CAS  Google Scholar 

  93. Nicholson, E. M., Mo, H., Prusiner, S. Cohen, F. E., and Marqusee, S. (2002) Differ-ences between the prion protein and its homolog Doppel: a partially structured state with implications for scrapie formation. J. Mol. Biol. 316, 807–815.

    PubMed  CAS  Google Scholar 

  94. Wille, H., Michelitsch, M. D., Guenebaut, V., et al. (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99, 3563–3568.

    PubMed  CAS  Google Scholar 

  95. Qin, K., Coomaraswamy, J., Mastrangelo, P., et al. (2003) The PrP-like protein Doppel binds copper. J. Biol. Chem. 278, 8888–8896.

    PubMed  CAS  Google Scholar 

  96. Gasset, M., Baldwin, M. A., Lloyd, D. H., et al. (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc. Natl. Acad. Sci. USA 89, 10,950–10,944.

    Google Scholar 

  97. Hiller, S., Kohl, A., Fiorito, F., et al. (2003) NMR structure of the apoptosis-and inflam-mation-related NALP1 pyrin domain. Structure 11, 1199–1205.

    PubMed  CAS  Google Scholar 

  98. Staub, E., Dahl, E., and Rosenthal, A. (2001) The DAPIN family: a novel domain links apoptotic and interferon response proteins. TIBS 26,83–85.

    PubMed  CAS  Google Scholar 

  99. Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K. (1995) A large-scale experiment to assess protein structure prediction methods. Proteins 23, ii–iv.

    PubMed  CAS  Google Scholar 

  100. Moult, J., Hubbard, T., Bryant, S. H., Fidelis, K., and Pedersen, J. T. (1997) Critical assess-ment of methods of protein structure prediction (CASP): round II. Proteins Suppl. 1,2–6.

    Google Scholar 

  101. Moult, J., Hubbard, T., Bryant, S. H., Fidelis, K., and Pedersen, J. T. (1999) Critical assess-ment of methods of protein structure prediction (CASP): round III. Proteins Suppl. 3, 2–6.

    Google Scholar 

  102. Moult, J., Fidelis, K., Zemla, A., and Hubbard, T. (2001) Critical assessment of methods of protein structure prediction (CASP): round IV. Proteins Suppl. 5, 2–7.

    Google Scholar 

  103. Melen, K., Krogh, A., and von Heijne, G. (2003) Reliability measures for membrane pro-tein topology prediction algorithms. J. Mol. Biol. 327, 735–744.

    PubMed  CAS  Google Scholar 

  104. Moller, S., Croning, D. R., and Apweiler, R. (2001) Evaluation of methods for the predic-tion of membrane spanning regions. Bioinformatics 17, 646–653.

    PubMed  CAS  Google Scholar 

  105. Liu, J. and Rost, B. (2001) Comparing function and structure between entire proteomes. Prot. Sci. 10, 1970–1979.

    Google Scholar 

  106. Rost, B. Sander, C., and Schneider, R. (1994) Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 235, 13–26.

    PubMed  CAS  Google Scholar 

  107. Andersen, A. F., Palmer, A. G., Brunak, S., and Rost, B. (2002) Continuum secondary structure captures protein flexibility. Structure 10, 175–184.

    PubMed  CAS  Google Scholar 

  108. Rost, B. (1997) Better 1D predictions by experts with machines. Proteins Suppl. 1, 192–197.

    Google Scholar 

  109. Rost, B. (2003) Rising accuracy of protein secondary structure prediction. In: Protein structure determination, analysis, and modeling for drug discovery. (Chasman, D., ed.) Dekker, New York: 207–249.

    Google Scholar 

  110. Levitt, M. and Chothia, C. (1976) Structural patterns in globular proteins. Nature 261, 552–558.

    PubMed  CAS  Google Scholar 

  111. Johnson, W. J. (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7, 205–214.

    PubMed  CAS  Google Scholar 

  112. Perczel, A., Park, K., and Fasman, G. D. (1992) Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel β-sheet in proteins. Proteins 13, 57–69.

    PubMed  CAS  Google Scholar 

  113. Levin, J. M., Pascarella, S., Argos, P., and Garnier, J. (1993)Quantification of secondary structure prediction improvement using multiple alignment. Prot. Engin. 6, 849–854.

    CAS  Google Scholar 

  114. Al-Lazikani, Sheinerman, F. and Honig, B. (2001) Combining multiple structure and sequence alignments to improve sequence detection and alignment: application to the SH2 domains of Janus kinases. Proc. Natl. Acad. Sci. USA 98, 14,796–14,801.

    Google Scholar 

  115. Bigelow, H., Petrey, D., Liu, J., Przybylski, D., and Rost, B. (2003) PROFtmb: prediction of transmembrane beta-barrels for entire proteomes. Nucl. Acids Res. 32, 2566–2577.

    Google Scholar 

  116. Rost, B. (1995) Protein structures sustain evolutionary drift. Folding Design 2, S519–S24.

    Google Scholar 

  117. Rost, B. (1995) TOPITS: Threading one-dimensional predictions into three-dimensional structures. In: Rawlings, C., Clark, D., Altman, R., Hunter, L., Lengauer, T., and Wodak, S. (eds.), Third International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA: AAAI, Cambridge, England. pp. 314–320.

    Google Scholar 

  118. Fischer, D. and Eisenberg, D. (1996) Fold recognition using sequence-derived properties. Prot. Sci. 5, 947–955.

    CAS  Google Scholar 

  119. Russell, R. B. Copley, R. R., and Barton, G. J. (1996) Protein fold recognition by map-ping predicted secondary structures. J. Mol. Biol. 259, 349–365.

    PubMed  CAS  Google Scholar 

  120. Rost, Schneider, R., and Sander, C. (1997) Protein fold recognition by prediction-based threading. J. Mol. Biol. 270, 471–480.

    Google Scholar 

  121. Jennings, A. J., Edge, C. M., and Sternberg, M. J. (2001) An approach to improving mul-tiple alignments of protein sequences using predicted secondary structure. Prot. Engin. 14, 227–231.

    CAS  Google Scholar 

  122. Liu, J. and Rost, B. (2004) CHOP proteins into structural domain-like fragments. Pro-teins 55, 678–688.

    CAS  Google Scholar 

  123. Marsden, R. L., McGuffin, L. J., and Jones, D. T. (2002)Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Prot. Sci. 11, 2814–2824.

    CAS  Google Scholar 

  124. Janin, J. (1976) Surface area of globular proteins. J. Mol. Biol. 105, 13–14.

    PubMed  CAS  Google Scholar 

  125. CUBIC, Columbia University, Dept. of Biochemistry & Mol. Biophysics. (1999) Short yeast ORFs: expressed protein or not? Rost, B. CUBIC-99-02. 1999.

    Google Scholar 

  126. Devos, D., and Valencia, A. (2001) Intrinsic errors in genome annotation. TIGS 17, 429–431.

    CAS  Google Scholar 

  127. Koonin, E. V., Wolf, Y. I., and Karev, G. P. (2002) The structure of the protein universe and genome evolution. Nature 420, 218–223.

    PubMed  CAS  Google Scholar 

  128. Anantharaman, V., Aravind, L., and Koonin, E. V. (2003) Emergence of diverse bio-chemical activities in evolutionarily conserved structural scaffolds of proteins. Curr. Opin. Chem. Biol. 7, 12–20.

    PubMed  CAS  Google Scholar 

  129. Iliopoulos, I., Tsoka, S., Andrade, M. A., et al. (2003) Evaluation of annotation strategies using an entire genome sequence. Bioinformatics 19, 717–726.

    PubMed  CAS  Google Scholar 

  130. Rost, B. (2002) Enzyme function less conserved than anticipated. J. Mol. Biol. 318, 595–608.

    PubMed  CAS  Google Scholar 

  131. Whisstock, J. and Lesk, A. M. (2003) Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307–340.

    PubMed  CAS  Google Scholar 

  132. Wright, P. E. and Dyson, H. J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331.

    PubMed  CAS  Google Scholar 

  133. Liu, J., Tan, H., and Rost, B. (2002) Loopy proteins appear conserved in evolution. J. Mol. Biol. 322, 53–64.

    PubMed  CAS  Google Scholar 

  134. Liu, J. and Rost, B. (2003) NORSp: predictions of long regions without regular secondary structure. Nucl. Acids Res. 31, 3833–3835.

    PubMed  CAS  Google Scholar 

  135. Perutz, M. F. (1997) Amyloid fibrils. Mutations make enzyme polymerize. Nature 385, 773–774.

    PubMed  CAS  Google Scholar 

  136. Dobson, M. (1999) Protein misfolding, evolution and disease. TIBS 24, 329–332.

    PubMed  CAS  Google Scholar 

  137. Whisstock, J. C., Pike, R. N., Jin, L., et al. (2000) Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparindagger. J. Mol. Biol. 301, 1287–1305.

    PubMed  CAS  Google Scholar 

  138. Whisstock, J. C., Skinner, R., Carrell, R. W., and Lesk, A. M. (2000) Conformational changes in serpins: I. The native and cleaved conformations of alpha(1)-antitrypsin. J. Mol. Biol. 296, 685–699.

    PubMed  CAS  Google Scholar 

  139. Kirshenbaum, K., Young, M., and Highsmith, S. (1999) Predicting allosteric switches in myosins. Prot. Sci. 8, 1806–1815.

    CAS  Google Scholar 

  140. Young, M., Kirshenbaum, K., Dill, K. A., and Highsmith, S. (1999) Predicting conforma-tional switches in proteins. Prot. Sci. 8, 1752–1764.

    CAS  Google Scholar 

  141. Emanuelsson, O. and von Heijne, G. (2001) Prediction of organellar targeting signals. Biochim. Biophys. Acta 1541, 114–119.

    PubMed  CAS  Google Scholar 

  142. Nakai, K. (2001) Prediction of in vivo fates of proteins in the era of genomics and proteomics. J. Struct. Biol. 134, 103–116.

    PubMed  CAS  Google Scholar 

  143. Valencia, A. and Pazos, F. (2002) Computational methods for the prediction of protein interactions. Curr. Opin. Str. Biol. 12, 368–373.

    CAS  Google Scholar 

  144. Rost, B. Liu, J., Nair, R., Wrzeszczynski, K. O., and Ofran, Y. (2003) Automatic predic-tion of protein function. Cell Mol. Life Sci. 60, 2637–2650.

    PubMed  CAS  Google Scholar 

  145. Cokol, M., Nair, R., and Rost, B. (2000) Finding nuclear localisation signals. EMBO Rep. 1,411–415.

    PubMed  CAS  Google Scholar 

  146. Nair, R. and Rost, B. (2003) Better prediction of sub-cellular localization by combining evolutionary and structural information. Proteins 53, 917–930.

    PubMed  CAS  Google Scholar 

  147. Jones, S. and Thornton, J. M. (1997) Analysis of protein-protein interaction sites using surface patches. J. Mol. iol. 272, 121–132.

    CAS  Google Scholar 

  148. Lo Conte, L., Chothia, C. and Janin, J. (1999) The atomic structure of protein-protein recognition sites. J. Mol. iol. 285, 2177–2198.

    Google Scholar 

  149. Sheinerman, F. and Honig, B. (2002) On the role of electrostatic interactions in the design of protein-protein interfaces. J. Mol. iol. 318, 161–177.

    CAS  Google Scholar 

  150. Ofran, Y. and Rost, B. (2003) Analysing six types of protein-protein interfaces. J. Mol. Bi 325, 377–387.

    CAS  Google Scholar 

  151. Ofran, Y. and Rost, B. (2003) Predict protein-protein interaction sites from local sequence information. FEBS Lett. 544, 236–239.

    PubMed  CAS  Google Scholar 

  152. Jensen, L. J., Gupta, R., Blom, N., et al. (2002) Prediction of human protein function from posttranslational modifications and localization features. J. Mol. Biol. 319, 1257–1265.

    PubMed  CAS  Google Scholar 

  153. Jensen, L. J., Gupta, R., Staerfeldt, H. H., and Brunak, S. (2003) Prediction of human protein function according to Gene Ontology categories. Bioinformatics 19, 635–642.

    PubMed  CAS  Google Scholar 

  154. de Lichtenberg, U., Jensen, T. S., Jensen, L. J., and Brunak, S. (2003) Protein feature based identification of cell cycle regulated proteins in yeast. J. Mol. Biol. 329, 663–674.

    PubMed  Google Scholar 

  155. Liu, J., Hegyi, H., Acton, Montelione, G. T., and Rost, B. (2003) Automatic target selection for structural genomics on eukaryotes. Proteins 56, 188–200.

    Google Scholar 

  156. Altschul, S. F. and Gish, W. (1996) Local alignment statistics. Meth. Enzymol. 266, 460–480.

    PubMed  CAS  Google Scholar 

  157. Leclerc, E., Peretz, D., Ball, H., et al. (2001) Immobilized prion protein undergoes spon-taneous rearrangement to a conformation having features in common with the infectious form. EMBO J. 20, 1547–1554.

    PubMed  CAS  Google Scholar 

  158. Baldwin, M. A., James, T. L., Cohen, F. E., and Prusiner, S. B. (1998) The three-dimen-sional structure of prion protein: implications for prion disease. Biochem. Soc. Trans. 26, 481–486.

    PubMed  CAS  Google Scholar 

  159. Viles, J. H., Donne, D., Kroon, G., et al. (2001) Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochem. 40, 2743–2753.

    CAS  Google Scholar 

  160. Kuwata, K., Li, H., Yamada, H., et al. (2002) Locally disordered conformer of the ham-ster prion protein: a crucial intermediate to PrPSc? Biochem. 41, 12,277–12,283.

    CAS  Google Scholar 

  161. Chenna, R., Sugawara, H., Koike, T., et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucl. Acids Res. 31, 3497–3500.

    PubMed  CAS  Google Scholar 

  162. Minor, D. L. J. and Kim, P. S. (1996)Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730–734.

    PubMed  CAS  Google Scholar 

  163. Dalal, S., Balasubramanian, S., and Regan, L. (1997) Protein alchemy: changing β-sheet into a-helix. Nat. Struct. iol. 4, 548–552.

    CAS  Google Scholar 

  164. Rost, B. Baldi, P., Barton, G., et al. (2001) Simple jury predicts protein secondary structure best. Columbia University. CUBIC_2001_10. 2001-10-01.

    Google Scholar 

  165. McGuffin, L. J. and Jones, D. T. (2003) Benchmarking secondary structure prediction for fold recognition. Proteins 52, 166–175.

    PubMed  CAS  Google Scholar 

  166. Eyrich, V. A., Standley, D. M., and Friesner, R. A. (1999) Prediction of protein tertiary structure to low resolution: performance for a large and structurally diverse test set. J. Mol. Biol. 288, 725–742.

    PubMed  CAS  Google Scholar 

  167. Ortiz, A. R., Kolinski, A., Rotkiewicz, B. P., Ilkowski, B., and Skolnick, J. (1999) Ab initio folding of proteins using restraints derived from evolutionary information. Proteins Suppl 3, 177–185.

    Google Scholar 

  168. Standley, D. M., Eyrich, V. A., An, Y., Pincus, D. L., Gunn, J. R., and Friesner, R. A. (2001) Protein structure prediction using a combination of sequence-based alignment, constrained energy minimization, and structural alignment. Proteins Suppl. 5, 133–139.

    Google Scholar 

  169. Aurora, R. and Rose, G. D. (1998) Helix capping. Prot. Sci. 7, 21–38.

    CAS  Google Scholar 

  170. Benner, S. A., Cannarozzi, G., Gerloff, D., Turcotte, M., and Chelvanayagam, G. (1997) Bona fide predictions of protein secondary structure using transparent analyses of mul-tiple sequence alignments. Chem. Rev. 97, 2725–2844.

    PubMed  CAS  Google Scholar 

  171. Springer, T. A. (1997) Folding of the N-terminal, ligand-binding region of integrin asubunits into a b-propeller domain. Proc. Natl. Acad. Sci. USA 94, 65–72.

    PubMed  CAS  Google Scholar 

  172. Li, W., Jaroszewski, L., and Godzik, A. (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17, 282–283.

    PubMed  CAS  Google Scholar 

  173. Wootton, J. and Federhen, S. (1996)Analysis of compositionally biased regions in sequence databases. Meth. Enzymol. 266, 554–571.

    PubMed  CAS  Google Scholar 

  174. Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., and Gibson, T. J. (1998) Multiple sequence alignment with Clustal X. TIBS 23, 403–405.

    PubMed  CAS  Google Scholar 

  175. Sander, C, and Schneider, R. (1991)Database of homology-derived structures and the structural meaning of sequence alignment. Proteins 9, 56–68.

    PubMed  CAS  Google Scholar 

  176. Jones, D. T., Tress, M., Bryson, K., and Hadley, C., (1999)Successful recognition of protein folds using threading methods biased by sequence similarity and predicted sec-ondary structure. Proteins 37, 104–111.

    Google Scholar 

  177. Thiele, R., Zimmer, R., and Lengauer, T. (1999) Protein threading by recursive dynamic programming. J. Mol. Biol. 290, 757–779.

    PubMed  CAS  Google Scholar 

  178. Xu, Y., Xu, D., Crawford, O. H., et al. (1999) Protein threading by PROSPECT: a prediction experiment in CASP3. Prot. Engin. 12, 899–907.

    CAS  Google Scholar 

  179. Lindahl, E. and Elofsson, A. (2000) Identification of related proteins on family, superfamily and fold level. J. Mol. Biol. 295, 613–625.

    PubMed  CAS  Google Scholar 

  180. Xu, Y. and Xu, D. (2000) Protein threading using PROSPECT: design and evaluation. Proteins 40, 343–354.

    PubMed  CAS  Google Scholar 

  181. Bates, P. A., Kelley, L. A., MacCallum, R. M., and Sternberg, M. J. (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIG-SAW and 3D-PSSM. Proteins Suppl. 5, 39–46.

    Google Scholar 

  182. Deane, M., Kaas, Q., andBlundell, T. L. (2001) SCORE: predicting the core of protein models. Bioinformatics 17, 541–550.

    PubMed  CAS  Google Scholar 

  183. Karchin, R., Cline, M., Mandel-Gutfreund, Y., and Karplus, K. (2003) Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry. Proteins 51, 504–514.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rost, B. (2005). How to Use Protein 1- D Structure Predicted by PROFphd. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:875

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:875

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics