Skip to main content

The Yeast Two-Hybrid System for Detecting Interacting Proteins

  • Protocol
The Proteomics Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Protein-protein interactions play an essential role in all living systems, and hence their analysis is of foremost importance in molecular biology. Although there are num-ber of methods to detect protein-protein interactions, the yeast two-hybrid system is probably the most successful method. Recently established protein interaction data- bases draw their data to a large extent from the summed input of small and large-scale two-hybrid screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnsson, N. and Varshavsky, A. (1994) Ubiquitin-assisted dissection of protein transport across membranes. EMBO J. 13, 2686–2698.

    PubMed  CAS  Google Scholar 

  2. Drees, B. L. (1999) Progress and variations in two-hybrid and three-hybrid technologies. Curr. Opin. Chem. Biol. 3, 64–70.

    Article  PubMed  CAS  Google Scholar 

  3. Frederickson, R. M. (1998) Macromolecular matchmaking: advances in two-hybrid and related technologies. Curr. Opin. Biotechnol. 9, 90–96.

    Article  PubMed  CAS  Google Scholar 

  4. Golemis, E. A. and Khazak, V. (1997) Alternative yeast two-hybrid systems. The interac-tion trap and interaction mating. Methods Mol. Biol. 63, 197–218.

    PubMed  CAS  Google Scholar 

  5. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interac-tions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz, H., Alvares, C. P., White, M. B., and Fields, S. (1998) Mutation detection by a two-hybrid assay. Hum. Mol. Genet. 7, 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  7. Vidal, M. and Legrain, P. (1999) Yeast forward and reverse’ n’-hybrid systems.Nucleic Acids Res. 27, 919–929.

    Article  PubMed  CAS  Google Scholar 

  8. Vidal, M. and Endoh, H. (1999) Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol. 17, 374–381.

    Article  PubMed  CAS  Google Scholar 

  9. SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S., and Wickens, M. (1996) A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. USA 94,8496–8501.

    Article  Google Scholar 

  10. Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell Biol. 15, 5820–5829.

    PubMed  CAS  Google Scholar 

  11. Rain, J. C., Selig, L., De Reuse, H., et al. (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215.

    Article  PubMed  CAS  Google Scholar 

  12. Raquet, X., Eckert, J. H., Muller, S., and Johnsson, N. (2001) Detection of altered protein conformations in living cells. J. Mol. Biol. 305, 927–938.

    Article  PubMed  CAS  Google Scholar 

  13. Cagney, G., Uetz, P., and Fields, S. (2001) Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol. Genomics 7, 27–34.

    PubMed  CAS  Google Scholar 

  14. Giot, L., Bader, J. S., Brouwer, C., et al. (2003) A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736.

    Article  PubMed  CAS  Google Scholar 

  15. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001) A compre-hensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574.

    Article  PubMed  CAS  Google Scholar 

  16. Uetz, P., Giot, L., Cagney, G., et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.

    Article  PubMed  CAS  Google Scholar 

  17. Stagljar, I. and Fields, S. (2002) Analysis of membrane protein interactions using yeast-based technologies. Trends Biochem. Sci. 27, 559–563.

    Article  PubMed  CAS  Google Scholar 

  18. Serebriiskii, I. G., Mitina, O., Pugacheva, E. N., et al. (2002) Detection of peptides, pro-teins, and drugs that selectively interact with protein targets. Genome Res. 12, 1785–1791.

    Article  PubMed  CAS  Google Scholar 

  19. Serebriiskii, I., Toby, G., Finley, R. L., and Golemis, E. A. (2001) Genomic analysis utiliz-ing the yeast two-hybrid system. In: (Starkey, M., ed.) Chimeric Genes and Proteins, Humana, Totowa, NJ: 415–454.

    Google Scholar 

  20. Duttweiler, H. M. (1996) A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. Trends Genet. 12, 340–341.

    Article  PubMed  CAS  Google Scholar 

  21. Finley, R. and Brent, R. (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Nat. Acad. Sci. USA 91, 12,980–12,984.

    Article  PubMed  CAS  Google Scholar 

  22. Petermann, R., Mossier, B. M., Aryee, D. N., and Kovar, H. (1998) A recombination based method to rapidly assess specificity of two-hybrid clones in yeast. Nucleic Acids Res. 26, 2252–2253.

    Article  PubMed  CAS  Google Scholar 

  23. Fromont-Racine, M., Mayes, A. E., Brunet-Simon, A., et al. (2000) Genome-wide protein interaction screens reveal functional networks involving Sm-like proteins. Yeast 17,95–110.

    Article  PubMed  CAS  Google Scholar 

  24. Cagney, G., Uetz, P., and Fields, S. (2000) High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328, 3–14.

    Article  PubMed  CAS  Google Scholar 

  25. Uetz, P., Ideker, T., and Schwikowski, B. (2002) Visualization and integration of protein-protein interactions. In: (Golemis, E., ed.) Protein-Protein Interactions-A Molecular Cloning Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY: 682.

    Google Scholar 

  26. Goh, K. I., Oh, E., Jeong, H., Kahng, B., and Kim, D. (2002) Classification of scale-free networks. Proc. Natl. Acad. Sci. USA 99, 12,583–12,588.

    Article  PubMed  CAS  Google Scholar 

  27. Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.

    Article  PubMed  CAS  Google Scholar 

  28. Schwikowski, B., Uetz, P., and Fields, S. (2000) A network of protein-protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261.

    Article  PubMed  CAS  Google Scholar 

  29. Bader, G. D. and Hogue, C. W. (2003) An automated method for finding molecular com-plexes in large protein interaction networks. BMC Bioinformatics 4, 2.

    Article  PubMed  Google Scholar 

  30. Sprinzak, E. and Margalit, H. (2001) Correlated sequence-signatures as markers of pro-tein-protein interaction. J. Mol. Biol., 311, 681–692.

    Article  PubMed  CAS  Google Scholar 

  31. Kelley, B. P., Sharan, R., Karp, R. M., et al. (2003) Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc. Natl. Acad. Sci. USA 100,11,394–11,399.

    Article  PubMed  CAS  Google Scholar 

  32. DeMarini, D. J., Creasy, C. L., Lu, Q., et al. (2001) Oligonucleotide-mediated, PCR-inde-pendent cloning by homologous recombination. Bio techniques 30, 520–523.

    CAS  Google Scholar 

  33. Oldenburg, K. R., Vo, K. T., Michaelis, S., and Paddon, C. (1997) Recombination-medi-ated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 25, 451–452.

    Article  PubMed  CAS  Google Scholar 

  34. James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain de-signed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Serebriiskii, I.G., Golemis, E.A., Uetz, P. (2005). The Yeast Two-Hybrid System for Detecting Interacting Proteins. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:653

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:653

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics