Skip to main content

Ligase Chain Reaction

  • Protocol
Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Nucleic acid amplification technologies have greatly facilitated medical diagnostics for genetic and infectious diseases through the exquisite sensitivity and specificity associated with these methods. Polymerase chain reaction (PCR) (see Chapter 6) ushered in these technologies and was soon accompanied by numerous newly developed amplification techniques, including ligase chain reaction (LCR). These nucleic acid amplification techniques result in the exponential increase of DNA such that the final product can be detected by nonisotopic means or without probe hybridization. Various techniques have been developed that amplify either the target DNA or the probes used to detect the specific target DNA. Ideally, any nucleic acid amplification technique used for diagnostic detection of DNA should incorporate high sensitivity and specificity and include effective discrimination of target DNA, low background values, ease of use, and the potential for automation. This chapter will describe the ligase chain reaction and highlight these qualities in light of its use as a diagnostic detection method

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  PubMed  CAS  Google Scholar 

  2. Barany, F. (1991) The ligase chain reaction in a PCR world. PCR Methods Appl. 1, 5–16.

    PubMed  CAS  Google Scholar 

  3. Wiedmann, M., Wilson, W. J., Czajka, J., Luo, J., Barany, F., and Batt, C. A. (1994) Ligase chain reaction (LCR)—overview and applications. PCR Methods Appl. 3, S51–S64.

    PubMed  CAS  Google Scholar 

  4. Luo, J., Bergstrom, D. E., and Barany, F. (1996) Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078.

    Article  PubMed  CAS  Google Scholar 

  5. Landegren, U., Kaiser, R., Sanders, J., and Hood, L. (1988) A ligase-mediated gene detection technique. Science 241, 1077–1080.

    Article  PubMed  CAS  Google Scholar 

  6. Bottema, C. D. and Sommer, S. S. (1993) PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat. Res. 288, 93–102.

    PubMed  CAS  Google Scholar 

  7. Schweitzer, B. and Kingsmore, S. (2001) Combining nucleic acid amplification and detection. Curr. Opin. Biotechnol. 12, 21–27.

    Article  PubMed  CAS  Google Scholar 

  8. Nickerson, D. A., Kaiser, R., Lappin, S., Stewart, J., Hood, L., and Landegren, U. (1990) Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87, 8923–8927.

    Article  PubMed  CAS  Google Scholar 

  9. Niederhauser, C., Kaempf, L., and Heinzer, I. (2000) Use of the ligase detection reaction-polymerase chain reaction to identify point mutations in extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 19, 477–480.

    Article  PubMed  CAS  Google Scholar 

  10. Wu, D. Y. and Wallace, R. B. (1989) The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 4, 560–569.

    Article  PubMed  CAS  Google Scholar 

  11. Reyes, A. A., Carrera, P., Cardillo, E., et al. (1997) Ligase chain reaction assay for human mutations: the sickle cell by LCR assay. Clin. Chem. 43, 40–44.

    PubMed  CAS  Google Scholar 

  12. Landegren, U., Samiotaki, M., Nilsson, M., Malmgren, H., and Kwiatkowski, M. (1996) Detecting genes with ligases. Methods 9, 84–90.

    Article  PubMed  CAS  Google Scholar 

  13. Zirvi, M., Nakayama, T., Newman, G., McCaffrey, T., Paty, P., and Barany, F. (1999) Ligase-based detection of mononucleotide repeat sequences. Nucleic Acids Res. 27, e40i–e40viii.

    Google Scholar 

  14. Wilson, V. L., Wei, Q., Wade, K. R., et al. (1999) Needle-in-a-haystack detection and identification of base substitution mutations in human tissues. Mutat. Res. 406, 79–100.

    PubMed  CAS  Google Scholar 

  15. Martinez, A., Lehman, T. A., Modali, R., and Mulshine, J. L. (2003) Screening of mutations in the ras family of oncogenes by polymerase chain reaction-based ligase chain reaction. Methods Mol. Biol. 74, 187–200.

    CAS  Google Scholar 

  16. Batt, C. A., Wagner, P., Wiedmann, M., Luo, J., and Gilbert, R. (1994) Detection of bovine leukocyte adhesion deficiency by nonisotopic ligase chain reaction. Anim. Genet. 25, 95–98.

    PubMed  CAS  Google Scholar 

  17. Zebala, J. A. and Barany, F. (1993) Implications for the ligase chain reaction in gastroenterology. J. Clin. Gastroenterol. 17, 171–175.

    Article  PubMed  CAS  Google Scholar 

  18. Muth, J., Williams, P. M., Williams, S. J., Brown, M. D., Wallace, D. C., and Karger, B. L. (1996) Fast capillary electrophoresis-laser induced fluorescence analysis of ligase chain reaction products: human mitochondrial DNA point mutations causing Leber’s hereditary optic neuropathy. Electrophoresis 17, 1875–1883.

    Article  PubMed  CAS  Google Scholar 

  19. Kim, J. and Lee, H.-J. (2000) Rapid discriminatory detection of genes coding for SHV *B-lactamases by ligase chain reaction. Antimicrob. Agents Chemother. 44, 1860–1864.

    Article  PubMed  CAS  Google Scholar 

  20. Minamitani, S., Nishiguchi, S., Kuroki, T., Otani, S., and Monna, T. (1997) Detection by ligase chain reaction of precore mutant of Hepatitis B virus. Hepatology 25, 216–222.

    Article  PubMed  CAS  Google Scholar 

  21. Devi Karthigesu, V., Mendy, M., Fortuin, M., Whittle, H. C., Howard, C. R., and Allison, L. M. C. (1995) The ligase chain reaction distinguishes hepatitis B virus S-gene variants. FEMS Microbiol. Lett. 131, 127–132.

    Article  Google Scholar 

  22. Osiowy, C. (2002) Sensitive detection of HBsAg mutants by a gap ligase chain reaction assay. J. Clin. Microbiol. 40, 2566–2571.

    Article  PubMed  CAS  Google Scholar 

  23. Abravaya, K., Carrino, J. J., Muldoon, S., and Lee, H. H. (1995) Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 23, 675–682.

    Article  PubMed  CAS  Google Scholar 

  24. Bourgeois, C., Sixt, N., Bour, J. B., and Pothier, P. (1997) Value of a ligase chain reaction assay for detection of ganciclovir resistance-related mutation 594 in UL97 gene of human cytomegalovirus. J. Virol. Methods 67, 167–175.

    Article  PubMed  CAS  Google Scholar 

  25. Wolcott, M. J. (1992) Advances in nucleic acid-based detection methods. Clin. Microbiol. Rev. 5, 370–386.

    PubMed  CAS  Google Scholar 

  26. Andras, S. C., Power, J. B., Cocking, E. C., and Davey, M. R. (2001) Strategies for signal amplification in nucleic acid detection. Mol. Biotechnol. 19, 29–44.

    Article  PubMed  CAS  Google Scholar 

  27. Winn-Deen, E. S. (1996) Multi-mutation screening using PCR and ligation—principles and applications. Trends Biotechnol. 14, 112–114.

    Article  PubMed  CAS  Google Scholar 

  28. Jarvius, J., Nilsson, M., and Landegren, U. (2003) Oligonucleotide ligation assay. Methods Mol. Biol. 212, 215–228.

    PubMed  CAS  Google Scholar 

  29. Gilpin, C. M., Dawson, D. J., O’Kane, G., Armstrong, J.G., and Coulter, C. (2002) Failure of commercial ligase chain reaction to detect Mycobacterium tuberculosis DNA in sputum samples from a patient with smear-positive pulmonary tuberculosis due to a deletion of the target region. J. Clin. Microbiol. 40, 2305–2307.

    Article  PubMed  CAS  Google Scholar 

  30. Shimer, G.H., Jr. and Backman, K. C. (1995) Ligase chain reaction. Methods Mol. Biol. 46, 269–278.

    PubMed  CAS  Google Scholar 

  31. Demchinskaya, A. V., Shilov, I. A., Karyagina, A. S., et al. (2001) A new approach for point mutation detection based on a ligase chain reaction. J. Biochem. Biophys. Methods 50, 79–89.

    Article  PubMed  CAS  Google Scholar 

  32. Davies, P. O. and Ridgway, G. L. (1997) The role of polymerase chain reaction and ligase chain reaction for the detection of Chlamydia trachomatis. Int. J. STD AIDS 8, 731–738.

    Article  PubMed  CAS  Google Scholar 

  33. Laffler, T., Carrino, J. J., and Marshall, R. L. (1993) The ligase chain reaction in DNA-based diagnosis. Ann. Biol. Clin. 50, 821–826.

    Google Scholar 

  34. Pfeffer, M., Meyer, H., and Wiedmann, M. (1994) A ligase chain reaction targeting two adjacent nucleotides allows the differentiation of cowpox virus from other Orthopoxvirus species. J. Virol. Methods 49, 353–360.

    Article  Google Scholar 

  35. Trippler, M., Hampl, H., Goergen, B., et al. (1996) Ligase chain reaction (LCR) assay for semiquantitative detection of HBV DNA in mononuclear leukocytes of patients with chronic hepatitis B. J. Viral Hepat. 3, 267–272.

    Article  Google Scholar 

  36. Rouwendal, G. J. A., Wolbert, E. J. H., Zwiers, L.-H., and Springer, J. (1996) Ligase chain reaction for site-directed in vitro mutagenesis. Methods Mol. Biol. 57, 149–156.

    PubMed  CAS  Google Scholar 

  37. Kalin, I., Shephard, S., and Candrian, U. (1992) Evaluation of the ligase chain reaction (LCR) for the detection of point mutations. Mutat. Res. 283, 119–123.

    Article  PubMed  CAS  Google Scholar 

  38. Lee, H. H. (1996) Ligase chain reaction. Biologicals 24, 197–199.

    Article  PubMed  CAS  Google Scholar 

  39. Marshall, R. L., Laffler, T., Cerney, M. B., Sustachek, J. C., Kratochvil, J., and Morgan, R. L. (1994) Detection of HCV RNA by the asymmetric gap ligase chain reaction. PCR Methods Appl. 4, 80–84.

    PubMed  CAS  Google Scholar 

  40. Schachter, J. (1997) DFA, EIA, PCR, LCR and other technologies: what tests should be used for diagnosis of Chlamydia infections? Immunol. Invest. 26, 157–161.

    Article  PubMed  CAS  Google Scholar 

  41. Wang, S. X. and Tay, L. (1999) Evaluation of three nucleic acid amplification methods for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J. Clin. Microbiol. 37, 1932–1934.

    PubMed  CAS  Google Scholar 

  42. Black, C. M., Marrazzo, J., Johnson, R. E., et al. (2002) Head-to-head multicenter comparison of DNA probe and nucleic acid amplification tests for Chlamydia trachomatis infection in women performed with an improved reference standard. J. Clin. Microbiol. 40, 3757–3763.

    Article  PubMed  CAS  Google Scholar 

  43. Cheng, J., Shoffner, M. A., Mitchelson, K. R., Kricka, L. J., and Wilding, P. (1996) Analysis of ligase chain reaction products amplified in a silicon-glass chip using capillary electrophoresis. J. Chromatogr. A 732, 151–158.

    Article  PubMed  CAS  Google Scholar 

  44. Jungkind, D. (2001) Molecular testing for infectious disease. Science 294, 1553–1555.

    Article  PubMed  CAS  Google Scholar 

  45. Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Worl, R., and Koster, H. (1996) Analysis of ligase chain reaction products via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 237, 174–181.

    Article  PubMed  CAS  Google Scholar 

  46. de Mendoza, C., Alcami, J., Sainz, M., Folgueira, D., and Soriano, V. (2002) Evaluation of the Abbott LCx quantitative assay for measurement of human immunodeficiency virus RNA in plasma. J. Clin. Microbiol. 40, 1518–1521.

    Article  Google Scholar 

  47. Crotty, P. L., Staggs, R. A., Porter, P. T., Killeen, A. A., and McGlennen, R. C. (1994) Quantitative analysis in molecular diagnostics. Hum. Pathol. 25, 572–579.

    Article  PubMed  CAS  Google Scholar 

  48. Marshall, R. L., Cockerill, J., Friedman, P., et al. (1998) Detection of GB virus C by the RT-PCR LCx system. J. Virol. Methods 73, 99–107.

    Article  PubMed  CAS  Google Scholar 

  49. Nilsson, M., Antson, D.-O., Barbany, G., and Landegren, U. (2001) RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res. 29, 578–581.

    Article  PubMed  CAS  Google Scholar 

  50. Au, L. C., Yang, F. Y., Yang, W. J., Lo, S. H., and Kao, C. F. (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli. Biochem. Biophys. Res. Commun. 248, 200–203.

    Article  PubMed  CAS  Google Scholar 

  51. Chalmers, F. M. and Curnow, K. M. (2001) Scaling up the ligase chain reaction-based approach to gene synthesis. Biotechniques 30, 249–252.

    PubMed  CAS  Google Scholar 

  52. Rouwendal, G. J. A., Wolbert, E. J. H., Zwiers, L.-H., and Springer, J. (1993) Simultaneous mutagenesis of multiple sites: application of the ligase chain reaction using PCR products instead of oligonucleotides. Biotechniques 15, 68–76.

    PubMed  CAS  Google Scholar 

  53. Boguszewski, C. L., Svensson, P. A., Jansson, T., Clark, R., Carlsson, L. M., and Carlsson, B. (1998) Cloning of two novel growth hormone transcripts expressed in human placenta. J. Clin. Endocrinol. Metab. 83, 2878–2885.

    Article  PubMed  CAS  Google Scholar 

  54. Balles, J. and Pflugfelder, G. O. (1994) Facilitated isolation of rare recombinants by ligase chain reaction: selection for intragenic crossover events in the Drosophila optomotor-blind gene. Mol. Gen. Genet. 245, 734–740.

    Article  PubMed  CAS  Google Scholar 

  55. Feero, W. G., Wang, J., Barany, F., et al. (1993) Hyperkalemic periodic paralysis: rapid molecular diagnosis and relationship of genotype to phenotype in 12 families. Neurology 43, 668–673.

    PubMed  CAS  Google Scholar 

  56. Shi, M. M. (2002) Technologies for individual genotyping: detection of genetic polymorphisms in drug targets and disease genes. Am. J. Pharmacogenom. 2, 197–205.

    Article  CAS  Google Scholar 

  57. Day, D. J., Speiser, P. W., White, P. C., and Barany, F. (1995) Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 29, 152–162.

    Article  PubMed  CAS  Google Scholar 

  58. Jou, C., Rhoads, J., Bouma, S., et al. (1995) Deletion detection in the dystrophin gene by multiplex gap ligase chain reaction and immunochromatographic strip technology. Hum. Mutat. 5, 86–93.

    Article  PubMed  CAS  Google Scholar 

  59. Wilson, W. J., Wiedmann, M., Dillard, H. R., and Batt, C. A. (1994) Identification of Erwinia stewartii by a ligase chain reaction assay. Appl. Environ. Microbiol. 60, 278–284.

    PubMed  CAS  Google Scholar 

  60. Hatziloukas, E., Tooley, P., and Carras, M. (1998) Ligase chain reaction-based detection of the potato pathogen Phytophthora infestans, in Proc. COST 823: New Technologies to Improve Phytodiagnosis, 12.

    Google Scholar 

  61. Moore, D. F. and Curry, J. I. (1998) Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by ligase chain reaction. J. Clin. Microbiol. 36, 1028–1031.

    PubMed  CAS  Google Scholar 

  62. O’Connor, T. M., Sheehan, S., Cryan, B., Brennan, N., and Bredin, C. P. (2000) The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis. Thorax 55, 955–957.

    Article  CAS  Google Scholar 

  63. Tortoli, E., Lavinia, F., and Simonetti, M. T. (1997) Evaluation of a commercial ligase chain reaction kit (Abbott LCx) for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary specimens. J. Clin. Microbiol. 35, 2424–2426.

    PubMed  CAS  Google Scholar 

  64. Lindbrathen, A., Gaustad, P., Hovig, B., and Tonjum, T. (1997) Direct detection of Mycobacterium tuberculosis complex in clinical samples from patients in Norway by ligase chain reaction. J. Clin. Microbiol. 35, 3248–3253.

    PubMed  CAS  Google Scholar 

  65. Palacios, J. J., Ferro, J., Ruiz Palma, N., et al. (1998) Comparison of the ligase chain reaction with solid and liquid culture media for routine detection of Mycobacterium tuberculosis in nonrespiratory specimens. Eur. J. Clin. Microbiol. Infect. Dis. 17, 767–772.

    Article  PubMed  CAS  Google Scholar 

  66. Gamboa, F., Dominguez, J., Padilla, E., et al. (1998) Rapid diagnosis of extrapulmonary tuberculosis by ligase chain reaction amplification. J. Clin. Microbiol. 36, 1324–1329.

    PubMed  CAS  Google Scholar 

  67. Lumb, R., Davies, K., Dawson, D., et al. (1999) Multicenter evaluation of the Abbott LCx Mycobacterium tuberculosis ligase chain reaction assay. J. Clin. Microbiol. 37, 3102–3107.

    PubMed  CAS  Google Scholar 

  68. Ausina, V., Gamboa, F., Gazapo, E., et al. (1997) Evaluation of the semiautomated Abbott LCx Mycobacterium tuberculosis assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J. Clin. Microbiol. 35, 1996–2002.

    PubMed  CAS  Google Scholar 

  69. Ruiz-Serrano, M. J., Albadalejo, J., Martinez-Sanchez, L., and Bouza, E. (1998) LCx: A diagnostic alternative for the early detection of Mycobacterium tuberculosis complex. Diagn. Microbiol. Infect. Dis. 32, 259–264.

    Article  PubMed  CAS  Google Scholar 

  70. Tortoli, E., Lavinia, F., and Simonetti, M. T. (1998) Early detection of Mycobacterium tuberculosis in BACTEC cultures by ligase chain reaction. J. Clin. Microbiol. 36, 2791–2792.

    PubMed  CAS  Google Scholar 

  71. Wang, L. and Tay, L. (2002) Early identification of Mycobacterium tuberculosis complex in BACTEC cultures by ligase chain reaction. J. Med. Microbiol. 51, 710–712.

    PubMed  CAS  Google Scholar 

  72. Jouveshomme, S., Cambau, E., Trystram, D., et al. (1998) Clinical utility of an amplification test based on ligase chain reaction in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 158, 1096–1101.

    PubMed  CAS  Google Scholar 

  73. Leckie, G. W., Erickson, D. D., He, Q., et al. (1998) Method for reduction of inhibition in a Mycobacterium tuberculosis-specific ligase chain reaction DNA amplification assay. J. Clin. Microbiol. 36, 764–767.

    PubMed  CAS  Google Scholar 

  74. Smith, K. R., Ching, S., Lee, H., et al. (1995) Evaluation of ligase chain reaction for use with urine for identification of Neisseria gonorrhoeae in females attending a sexually transmitted disease clinic. J. Clin. Microbiol. 33, 455–457.

    PubMed  CAS  Google Scholar 

  75. Kacena, K. A., Quinn, S. B., Hartman, S. C., Quinn, T. C., and Gaydos, C. A. (1998) Pooling of urine samples for screening for Neisseria gonorrhoeae by ligase chain reaction: accuracy and application. J. Clin. Microbiol. 36, 3624–3628.

    PubMed  CAS  Google Scholar 

  76. Stary, A. (1999) Correct samples for diagnostic tests in sexually transmitted diseases: which sample for which test? FEMS Immunol. Med. Microbiol. 24, 455–459.

    PubMed  CAS  Google Scholar 

  77. Hook, E. W., III, Ching, S. F., Stephens, J., Hardy, K. F., Smith, K. R., and Lee, H. H. (1997) Diagnosis of Neisseria gonorrhoeae infections in women by using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35, 2129–2132.

    PubMed  Google Scholar 

  78. Kehl, S.C., Georgakas, K., Swain, G. R., et al. (1998) Evaluation of the Abbott LCx assay for detection of Neisseria gonorrhoeae in endocervical swab specimens from females. J. Clin. Microbiol. 36, 3549–3551.

    PubMed  CAS  Google Scholar 

  79. Buimer, M., Van Doornum, G. J. J., Ching, S., et al. (1996) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by ligase chain reaction-based assays with clinical specimens from various sites: Implications for diagnostic testing and screening. J. Clin. Microbiol. 34, 2395–2400.

    PubMed  CAS  Google Scholar 

  80. Carroll, K. C., Aldeen, W. E., Morrison, M., Anderson, R., Lee, D., and Mottice, S. (1998) Evaluation of the Abbott LCx ligase chain reaction assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine and genital swab specimens from a sexually transmitted disease clinic population. J. Clin. Microbiol. 36, 1630–1633.

    PubMed  CAS  Google Scholar 

  81. Brodine, S. K., Shafer, M., Shaffer, R. A., et al. (1998) Asymptomatic sexually transmitted disease prevalence in four military populations: application of DNA amplification assays for Chlamydia and gonorrhea screening. J. Infect. Dis. 178, 1202–1204.

    Article  PubMed  CAS  Google Scholar 

  82. de Barbeyrac, B., Rodriguez, P., Dutilh, B., Le Roux, P., and Bebear, C. (1995) Detection of Chlamydia trachomatis by ligase chain reaction compared with polymerase chain reaction and cell culture in urogenital specimens. Genitourin. Med. 71, 382–386.

    Google Scholar 

  83. Puolakkainen, M., Hiltunen-Back, E., Reunala, T., et al. (1998) Comparison of performances of two commercially available tests, a PCR assay and a ligase chain reaction test, in detection of urogenital Chlamydia trachomatis infection. J. Clin. Microbiol. 36, 1489–1493.

    PubMed  CAS  Google Scholar 

  84. Waites, K. B., Smith, K. R., Crum, M. A., Hockett, R. D., Wells, A. H., and Hook, E.W., III. (1999) Detection of Chlamydia trachomatis endocervical infections by ligase chain reaction versus ACCESS Chlamydia antigen assay. J. Clin. Microbiol. 37, 3072–3073.

    PubMed  CAS  Google Scholar 

  85. Rabenau, H. F., Kohler, E., Peters, M., Doerr, H. W., and Weber, B. (2000) Low correlation of serology with detection of Chlamydia trachomatis by ligase chain reaction and antigen EIA. Infection 28, 97–102.

    Article  PubMed  CAS  Google Scholar 

  86. Watson, E. J., Templeton, A., Russell, I., et al. (2002) The accuracy and efficacy of screening tests for Chlamydia trachomatis: a systematic review. J. Med. Microbiol. 51, 1021–1031.

    PubMed  Google Scholar 

  87. Rumpianesi, F., Donati, M., La Placa, M., Negosanti, M., D’Antuono, A., and Cevenini, R. (1996) Use of the ligase chain reaction on urine of men and their female sexual partners for detection of genital Chlamydia trachomatis infection. Clin. Microbiol. Infect. 2, 123–126.

    Article  PubMed  Google Scholar 

  88. Palmer, L. and Falkow, S. (1986) A common plasmid of Chlamydia trachomatis. Plasmid 16, 52–62.

    Article  PubMed  CAS  Google Scholar 

  89. Joseph, T., Nano, F. E., Garon, C. F., and Caldwell, H. D. (1986) Molecular characterization of Chlamydia trachomatis and Chlamydia psittaci plasmids. Infect. Immun. 51, 699–703.

    PubMed  CAS  Google Scholar 

  90. Bassiri, M., Hu, H.-Y., Domeika, M.A., et al. (1995) Detection of Chlamydia trachomatis in urine specimens from women by ligase chain reaction. J. Clin. Microbiol. 33, 898–900.

    PubMed  CAS  Google Scholar 

  91. Hadgu, A. (1997) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis. Statist. Med. 16, 1391–1399.

    Article  CAS  Google Scholar 

  92. Chernesky, M., Sellors, J., and Mahony, J. (1998) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis: letter to the editor. Statist. Med. 17, 1055–1066.

    Article  Google Scholar 

  93. Schachter, J. (1998) Bias in the evaluation of DNA-amplification tests for detecting Chlamydia trachomatis: letter to the editor. Statist. Med. 17, 1527–1530.

    Article  CAS  Google Scholar 

  94. Johnson, R. E., Green, T. A., Schachter, J., et al. (2000) Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men. J. Clin. Microbiol. 38, 4382–4386.

    PubMed  CAS  Google Scholar 

  95. Van Dyck, E., Ieven, M., Pattyn, S., Van Damme, L., and Laga, M. (2001) Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J. Clin. Microbiol. 39, 1751–1756.

    Article  Google Scholar 

  96. Winter, A. J., Gilleran, G., Eastick, K., and Ross, J. D. C. (2000) Comparison of a ligase chain reaction-based assay and cell culture for detection of pharyngeal carriage of Chlamydia trachomatis. J. Clin. Microbiol. 38, 3502–3504.

    PubMed  CAS  Google Scholar 

  97. Noguchi, Y., Yabushita, H., Noguchi, M., Fujita, M., Asai, M., and Del Carpio, C. A. (2002) Detection of Chlamydia trachomatis infection with DNA extracted from formalin-fixed paraffin-embedded tissues. Diagn. Microbiol. Infect. Dis. 43, 1–6.

    Article  PubMed  CAS  Google Scholar 

  98. Nikkari, S., Puolakkainen, M., Yli-Kerttula, U., Luukkainen, R., Lehtonen, O.-P., and Toivanen, P. (1997) Ligase chain reaction in detection of Chlamydia DNA in synovial fluid cells. Br. J. Rheumatol. 36, 763–765.

    Article  PubMed  CAS  Google Scholar 

  99. Blocker, M. E., Krysiak, R. G., Behets, F., Cohen, M. S., and Hobbs, M. M. (2002) Quantification of Chlamydia trachomatis elementary bodies in urine by ligase chain reaction. J. Clin. Microbiol. 40, 3631–3634.

    Article  PubMed  Google Scholar 

  100. Neu, N., Grumet, S., McNees, A., et al. (1999) Screening for Chlamydia trachomatis in young men by ligase chain reaction. Pediatr. Infect. Dis. J. 18, 649–650.

    Article  PubMed  CAS  Google Scholar 

  101. Battle, T. J., Golden, M. R., Suchland, K. L., et al. (2001) Evaluation of laboratory testing methods for Chlamydia trachomatis infection in the era of nucleic acid amplification. J. Clin. Microbiol. 39, 2924–2927.

    Article  PubMed  CAS  Google Scholar 

  102. Dean, D., Ferrero, D., and McCarthy, M. (1998) Comparison of performance and cost-effectiveness of direct fluorescent-antibody, ligase chain reaction, and PCR assays for verification of chlamydia enzyme immunoassay results for populations with a low to moderate prevalence of Chlamydia trachomatis infection. J. Clin. Microbiol. 36, 94–99.

    PubMed  CAS  Google Scholar 

  103. Clad, A., Prillwitz, J., Hintz, K. C., et al. (2001) Discordant prevalence of Chlamydia trachomatis in asymptomatic couples screened using urine ligase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 20, 324–328.

    Article  PubMed  CAS  Google Scholar 

  104. Mahony, J., Chong, S., Jang, D., et al. (1998) Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction, and transcription-mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J. Clin. Microbiol. 36, 3122–3126.

    PubMed  CAS  Google Scholar 

  105. Jensen, I. P., Thorson, P., and Moller, B. R. (1997) Sensitivity of ligase chain reaction assay of urine from pregnant women for Chlamydia trachomatis. Lancet 349, 329–330.

    Article  PubMed  CAS  Google Scholar 

  106. Gaydos, C. A., Howell, M. R., Quinn, T. C., Gaydos, J. C., and McKee, K. T., Jr. (1998) Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicolaou smear clinics. J. Clin. Microbiol. 36, 1300–1304.

    PubMed  CAS  Google Scholar 

  107. Horner, P. J., Crowley, T., Leece, J., Hughes, A., Smith, G. D., and Caul, E. O. (1998) Chlamydia trachomatis detection and the menstrual cycle. Lancet 351, 341–342.

    Article  PubMed  CAS  Google Scholar 

  108. Webster Dicker, L., Mosure, D. J., Levine, W. C., Black, C. M., and Berman, S. M. (2000) Impact of switching laboratory tests on reported trends in Chlamydia trachomatis infections. Am. J. Epidemiol. 151, 430–435.

    Google Scholar 

  109. Notomi, T., Ikeda, Y., Okadome, A., and Nagayama, A. (1998) The inhibitory effect of phosphate on the ligase chain reaction used for detecting Chlamydia trachomatis. J. Clin. Pathol. 51, 306–308.

    Article  PubMed  CAS  Google Scholar 

  110. Thomas, B., Pierpoint, T., Taylor-Robinson, D., and Renton, A. (2001) Qualitative and quantitative aspects of the ligase chain reaction assay for Chlamydia trachomatis in genital tract samples and urines. Int. J. STD AIDS 12, 589–594.

    Article  PubMed  CAS  Google Scholar 

  111. Castriciano, S., Luinstra, K., Jang, D., et al. (2002) Accuracy of results obtained by performing a second ligase chain reaction assay and PCR analysis on urine samples with positive or near-cutoff results in the LCx test for Chlamydia trachomatis. J. Clin. Microbiol. 40, 2632–2634.

    Article  PubMed  CAS  Google Scholar 

  112. Thomas, B., Pierpoint, T., Taylor-Robinson, D., and Renton, A. (2001) Reduced detection of Chlamydia trachomatis by the ligase chain reaction assay due to suboptimal storage of urine. Eur. J. Clin. Microbiol. Infect. Dis. 20, 581–583.

    Article  PubMed  CAS  Google Scholar 

  113. Allain, J.-P. (2000) Genomic screening for blood-borne viruses in transfusion settings. Clin. Lab. Haem. 22, 1–10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Osiowy, C. (2005). Ligase Chain Reaction. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics