Skip to main content

Biosynthesis and Analysis of Bilins

  • Protocol
Heme, Chlorophyll, and Bilins

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The term bilin is a collective one to describe a broad group of open chain tetrapyrroles and derives from the name “bile pigments” as the first of these compounds to be characterized were isolated from animal bile. These bilins, biliverdin (BV) and bilirubin (BR), are the sequential products of heme degradation (their green and yellow pigmentation can be detected during the discoloration of a bruise), with BR being conjugated to glucuronic acid to expedite excretion. The structures of BV and BR are shown in Figure 1, and their biochemistry is still the best understood of the bilins today. However, we now know that there is a great diversity of naturally occurring bilins that have a wide range of different functions. In cyanobacteria and two groups of algae, the rhodophytes (red algae) and the cryptomonads, a tremendous variety of bilins are utilized for light harvesting through covalent attachment to the phycobiliproteins, which comprise the photosynthetic apparatus of these organisms (25,26).

Chemical structures of the major bilins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arciero, D.M., D.A. Bryant, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J. Biol. Chem. 263:18343–18349.

    PubMed  CAS  Google Scholar 

  2. Arciero, D.M., J.L. Dallas, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. II. Determination of the structures of tryptic bilin peptides derived from the phycocyanobilin adduct. J. Biol. Chem. 263:18350–18357.

    PubMed  CAS  Google Scholar 

  3. Arciero, D.M., J.L. Dallas, and A.N. Glazer. 1988. In vitro attachment of bilins to apophycocyanin. III. Properties of the phycoerythrobilin adduct. J. Biol. Chem. 263:18358–18363.

    PubMed  CAS  Google Scholar 

  4. Austin, C.C. and K.W. Jessing. 1994. Green-blood pigmentation in lizards. Comp. Biochem. Physiol. 109A:619–626.

    Article  CAS  Google Scholar 

  5. Beale, S.I. 1993. Biosynthesis of phycobilins. Chem. Rev. 93:785–802.

    Article  CAS  Google Scholar 

  6. Beale, S.I. and J. Cornejo. 1984. Enzymic Transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga Cyanidium caldarium. Plant Physiol. 76:7–15.

    Article  PubMed  CAS  Google Scholar 

  7. Beale, S.I. and J. Cornejo. 1984. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch. Biochem. Biophys. 235:371–384.

    Article  PubMed  CAS  Google Scholar 

  8. Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J. Biol. Chem. 266:22328–22332.

    PubMed  CAS  Google Scholar 

  9. Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J. Biol. Chem. 266:22333–22340.

    PubMed  CAS  Google Scholar 

  10. Beale, S.I. and J. Cornejo. 1991. Biosynthesis of phycobilins. 15,16-dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J. Biol. Chem. 266:22341–22345.

    PubMed  CAS  Google Scholar 

  11. Brockmann, H., Jr. and G. Knobloch. 1973. Die absolute Konfiguration des 2E-Äthyliden-3-methyl-succinimids. Ein Beitrag zur Bestimmung der absoluten Konfiguration von Phycobilinen und Phytochrom. Chem. Ber. 106:803–811.

    Article  Google Scholar 

  12. Chapman, D.J., W.J. Cole, and H.W. Siegelman. 1967. The structure of phycoerythrobilin. J. Am. Chem. Soc. 89:5976–5977.

    Article  CAS  Google Scholar 

  13. Cole, W.J., D.J. Chapman, and H.W. Siegelman. 1967. The structure of phycocyanobilin. J. Am. Chem. Soc. 89:3643–3645.

    Article  CAS  Google Scholar 

  14. Cole, W.J., D.J. Chapman, and H.W. Siegelman. 1968. The structure and properties of phycocyanobilin and related bilatrienes. Biochem. 7:2929–2935.

    Article  CAS  Google Scholar 

  15. Cornejo, J. and S.I. Beale. 1997. Phycobilin biosynthetic reactions in extracts of cyanobacteria. Photosyn. Res. 51:223–230.

    Article  CAS  Google Scholar 

  16. Cornejo, J. and S.I. Beale. 1988. Algal heme oxygenase from Cyanidium caldarium. Partial purification and fractionation into three required protein components. J. Biol. Chem. 263:11915–11921.

    PubMed  CAS  Google Scholar 

  17. Cornejo, J., S.I. Beale, M.J. Terry, and J.C. Lagarias. 1992. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins. J. Biol. Chem. 267:14790–14798.

    PubMed  CAS  Google Scholar 

  18. Cornejo, J., R.D. Willows, and S.I. Beale. 1998. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J. 15:99–107.

    Article  PubMed  CAS  Google Scholar 

  19. Crespi, H.L., L.J. Boucher, G.D. Norman, J.J. Kate, and R.C. Dougherty. 1967. Structure of phycocyanobilin. J. Am. Chem. Soc. 89:3642–3643.

    Article  CAS  Google Scholar 

  20. Crespi, H.L. and J.J. Kate. 1969. Exchangeable hydrogen in phycoerythrobilin. Phytochem. 8:759–761.

    Article  CAS  Google Scholar 

  21. Davis, S.J., J. Kurepa, and R.D. Vierstra. 1999. The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc. Natl. Acad. Sci. USA 96:6541–6546.

    Article  PubMed  CAS  Google Scholar 

  22. Elich, T.D., A.F. McDonagh, LA. Palma, and J.C. Lagarias. 1989. Phytochrome chromophore biosynthesis. Treatment of tetrapyrrole-deficient Avena explants with natural and non-natural bilatrienes leads to formation of spectrally active holoproteins. J. Biol. Chem. 264:183–189.

    PubMed  CAS  Google Scholar 

  23. Fang, L.-S. and J.L. Bada. 1990. The blue-green blood plasma of marine fish. Comp. Biochem. Physiol. 97B:37–45.

    CAS  Google Scholar 

  24. Fu, E., L. Friedman, and H.W. Siegelman. 1979. Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. Biochem. J. 179: 1–6.

    PubMed  CAS  Google Scholar 

  25. Glazer, A.N. 1989. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 264:1–4.

    PubMed  CAS  Google Scholar 

  26. Glazer, A.N. and G.J. Wedemayer. 1995. Cryptomonad biliproteins—an evolutionary perspective. Photosyn. Res. 46:93–105.

    Article  CAS  Google Scholar 

  27. Goodman, W.G., B. Adams, and J.T. Trost. 1985. Purification and characterization of a biliverdin-associated protein from the hemolymph of Manduca Sexta. Biochem. 24:1168–1175.

    Article  CAS  Google Scholar 

  28. Gossauer, A. and W. Hirsch. 1974. Totalsynthese des racemischen Phycocyanobilins (Phycobiliverdins) sowie eines “Homophycobiliverdins”. Liebigs Ann. Chem. 1974:1496–1513.

    Article  Google Scholar 

  29. Gossauer, A. and J.-P. Weller. 1978. Chemical total synthesis of (+)-(2R, 16R)-and (+)-(2R, 16R)-phycoery-throbilin dimethyl ester. J. Am. Chem. Soc. 100:5928–5933.

    Article  CAS  Google Scholar 

  30. Kakiuchi, T., H. Kato, K.P. Jayasundera, T. Higashi, K. Watabe, D. Sawamoto, H. Kinoshita, and K. Inomata. 1998. Total syntheses of (±)-phycocyanobilin and its derivatives bearing a photoreactive group at Dring. Chem. Lett. 1998:1001–1002.

    Article  Google Scholar 

  31. Kennedy, G.Y. and H.G. Vevers. 1976. A survey of avian eggshell pigments. Comp. Biochem. Physiol. 55B:117–123.

    Google Scholar 

  32. Kutty, R.K. and M.D. Maines. 1981. Purification and characterization of biliverdin reductase from rat liver. J. Biol. Chem. 256:3956–3962.

    PubMed  CAS  Google Scholar 

  33. Lagarias, D.M., M.W. Crepeau, M.O. Maines, and J.C. Lagarias. 1997. Regulation of photomorphogenesis by expression of mammalian biliverdin reductase in transgenic Arabidopsis plants. Plant Cell 9:675–688.

    Article  PubMed  CAS  Google Scholar 

  34. Maines, M.D. 1988. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2:2557–2568.

    PubMed  CAS  Google Scholar 

  35. Malnes, M.D., N.G. Ibrahim, and A. Kappas. 1977. Solubilization and partial purification of heme oxygenase from rat liver. J. Biol. Chem. 252:5900–5903.

    Google Scholar 

  36. McDonagh, A.F. and F. Assisi. 1971. Commercial bilirubin: a trinity of isomers. FEBS Lett. 18:315–317.

    Article  PubMed  CAS  Google Scholar 

  37. McDonagh, A.F. and L.A. Palma. 1980. Preparation and properties of crystalline biliverdin IXoc. Simple methods for preparing isomerically homogenous biliverdin and (14C) biliverdin by using 2,3-dichloro-5,6-dicyanobenzoquinone. Biochem. J. 189:193–208.

    PubMed  CAS  Google Scholar 

  38. McDowell, M.D. and J.C. Lagarias. 1997. Partial purification, photoaffinity labeling, and characterization of phytochromobilin synthase. Plant Physiol. 114:S739.

    Google Scholar 

  39. Muramoto, T., T. Kohchi, A. Yokota, I. Hwang, and H.M. Goodman. 1999. The Arabidopsis photomorphogenic mutant hyl is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347.

    Article  PubMed  CAS  Google Scholar 

  40. Murphy, J.T. and J.C. Lagarias. 1997. The phytofluors: a new class of fluorescent protein probes. Curr. Biol. 7:870–876.

    Article  PubMed  CAS  Google Scholar 

  41. Oren, D.A. 1997. Bilirubin, rem sleep, and photo-transduction of environmental time cues. A Hypothesis. Chronobiol. Int. 14:319–329.

    Article  PubMed  CAS  Google Scholar 

  42. Ortiz de Montellano, P.R. 1998. Heme oxygenase mechanism: evidence for an electrophilic, ferric peroxide species. Acc. Chem. Res. 31:543–549.

    Article  CAS  Google Scholar 

  43. Prince, J., T.G. Nolen, and L. Coelho. 1998. Defensive ink pigment processing and secretion in Aplysia californica: concentration and storage of phycoerythrobilin in the ink gland. J. Exp. Biol. 207:1595–1613.

    Google Scholar 

  44. Provasoli, L., J.J.A. McLaughlin, and M.R. Droop. 1957. The development of artificial media for marine algae. Archiv. Mikrobiol. 25:392–428.

    Article  CAS  Google Scholar 

  45. Rhie, G. and S.I. Beale. 1992. Biosynthesis of Phycobilins. Ferredoxin-supported NADPH-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J. Biol. Chem. 267:16088–16093.

    PubMed  CAS  Google Scholar 

  46. Rhie, G. and S.I. Beale. 1995. Phycobilin biosynthesis: reductant requirements and product identification for heme oxygenase from Cyanidium caldarium. Arch. Biochem. Biophys. 320:182–194.

    Article  PubMed  CAS  Google Scholar 

  47. Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman, and R.Y. Stanier. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1–61.

    Google Scholar 

  48. Ryter, S., E. Kvam, and R.M. Tyrell. 1999. Heme oxygenase activity determination by high-performance liquid chromatography. Methods Enzymol. 300:322–336.

    Article  PubMed  CAS  Google Scholar 

  49. Schluchter, W.M. and A.N. Glazer. 1997. Characterization of cyanobacterial biliverdin reductase. J. Biol. Chem. 272:13562–13569.

    Article  PubMed  CAS  Google Scholar 

  50. Singleton, J.W. and L. Laster. 1965. Biliverdin reductase of guinea pig liver. J. Biol. Chem. 240:4780–4789.

    PubMed  CAS  Google Scholar 

  51. Stocker, R., Y. Yamamoto, A.F. McDonagh, A.N. Glazer, and B.N. Ames. 1987. Science 235:1043–1046.

    Article  PubMed  CAS  Google Scholar 

  52. Stoll, M.S. and C.H. Gray. 1977. The preparation and characterization of bile pigments. Biochem. J. 163:59–101.

    PubMed  CAS  Google Scholar 

  53. Tenhunen, R., H.S. Marver, and R. Schmid. 1968. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. Natl. Acad. Sci. USA 61:748–755.

    Article  PubMed  CAS  Google Scholar 

  54. Terry M.J. and R.E. Kendrick. 1996. The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J. Biol. Chem. 271:21681–21686.

    Article  PubMed  CAS  Google Scholar 

  55. Terry, M.J. and J.C. Lagarias. 1991. Holophytochrome assembly. Coupled assay for phytochromobilin synthesis in organello. J. Biol. Chem. 266:22215–22221.

    PubMed  CAS  Google Scholar 

  56. Terry, M.J., M.D. Maines, and J.C. Lagarias. 1993. Inactivation of phytochrome-and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J. Biol. Chem. 268:26099–26106.

    PubMed  CAS  Google Scholar 

  57. Terry, M.J., M.D. McDowell, and J.C. Lagarias. 1995. (3Z)-and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J. Biol. Chem. 270:11111–11119.

    Article  PubMed  CAS  Google Scholar 

  58. Terry M.J., J.A. Wahleithner, and J.C. Lagarias. 1993. Biosynthesis of the plant photoreceptor phytochrome. Arch. Biochem. Biophys. 306:1–15.

    Article  PubMed  CAS  Google Scholar 

  59. Turner, L., J.D. Houghton, and S.B. Brown. 1992. Isolation and partial purification of phycocyanin apoprotein and its role in studies of bilin-apoprotein attachment. Plant Physiol. Biochem. 30:309–314.

    CAS  Google Scholar 

  60. Vreman, H.J., D.A. Cipkala, and D.K. Stevenson. 1996. Characterization of porphyrin heme oxygenase inhibitors. Can. J. Physiol. Pharmacol. 74:278–285.

    Article  PubMed  CAS  Google Scholar 

  61. Vreman, HJ. and D.K. Stevenson. 1988. Heme oxygenase activity as measured by carbon monoxide production. Anal. Biochem. 168:31–38.

    Article  PubMed  CAS  Google Scholar 

  62. Weller, J.L., M.J. Terry, C. Rameau, J.B. Reid, and R.E. Kendrick. 1996. The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IXα. Plant Cell 8:55–67.

    Article  PubMed  CAS  Google Scholar 

  63. Weller, J.-P. and A. Gossauer. 1980. Synthese und photoisomerisierung des racem. Phytochromobilin-dimethylesters. Chem. Ber. 113:1603–1611.

    Article  CAS  Google Scholar 

  64. Wilks, A. and P.R. Ortiz de Montellano. 1993. Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J. Biol. Chem. 268:22357–22362.

    PubMed  CAS  Google Scholar 

  65. Wilks, A. and M.P. Schmitt. 1998. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J. Biol. Chem. 273:837–841.

    Article  PubMed  CAS  Google Scholar 

  66. Wu, S.-H. and J.C. Lagarias. 1996. The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome. Proc. Nad. Acad. Sci. USA 93:8989–8994.

    Article  CAS  Google Scholar 

  67. Wu, S.-H., M.T. McDowell, and J.C. Lagarias. 1997. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J. Biol. Chem. 272:25700–25705.

    Article  PubMed  CAS  Google Scholar 

  68. Yamaguchi, T., Y. Komoda, and H. Nakajima. 1994. Biliverdin-IXβ and biliverdin IXα reductase from human liver. J. Biol. Chem. 269:24343–24348.

    PubMed  CAS  Google Scholar 

  69. Yoshida, T. and G. Kikuchi. 1978. Features of the reaction of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 253:4230–4236.

    PubMed  CAS  Google Scholar 

  70. Yoshida, T., M. Noguchi, and G. Kikuchi. 1982. The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system. J. Biol. Chem. 257:9345–9348.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Terry, M.J. (2002). Biosynthesis and Analysis of Bilins. In: Smith, A.G., Witty, M. (eds) Heme, Chlorophyll, and Bilins. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-243-0:273

Download citation

  • DOI: https://doi.org/10.1385/1-59259-243-0:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-111-0

  • Online ISBN: 978-1-59259-243-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics