Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3641 Accesses

Abstract

The availability, in the past three decades, of well-characterized and immortalized neural cell lines has led to a rapid expansion of knowledge in many aspects of neurobiology. The major advantages of cell lines are that they are capable of long-term or indefinite growth, and generally represent a single cell type, providing a degree of reproducibility and simplicity in an otherwise complicated biological field. With these advantages come disadvantages as well, but careful experimental design, and an appreciation of the limits of the approach, allows the investigator using neural cell lines a powerful tool in answering precise questions with a minimum of interpretational complications. Furthermore, the use of cell lines eliminates the considerable cost and other concerns associated with animals as a source of experimental material. This chapter addresses the usefulness, limitations, and availability of neural cell lines. Because methodology of routine cell culture is covered in other chapters of this volume, general technical aspects of laboratory manipulations of the lines are not covered here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Allalunis-Turner, M. J., Barro, G. M., Day, R. S., Dobler, K. D., and Mirzayans, R. (1993), Isolation of two lines from a human malignant glioma specimen differing in sensitivity to radiation and chemotherapeutic drugs. Radiat. Res. 134, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Amano, T., Richelson, E., and Nirenberg, M. (1972), Neurotransmitter synthesis by neuroblastoma clones. Proc. Natl. Acad. Sci. USA 69, 258–263.

    Article  PubMed  CAS  Google Scholar 

  • Augusti-Tocco, G. and Sato, G. (1969), Establishment of functional clonal lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. USA 64, 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Bain, G. and Gottlieb, D. I. (1998), Neural cells derived by in vitro differentiation of PI 9 and embryonic stem cells. Per sped. Dev. Neurobiol. 5, 175–178.

    CAS  Google Scholar 

  • Barth, R. F. (1998), Rat brain tumor models in experimental neuro-oncology. J. Neurooncol. 36, 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968), Differentiated rat glial cell strain in tissue culture. Science 161, 370,371.

    Article  PubMed  CAS  Google Scholar 

  • Berkemeier, L. R., Winslow, J. W., Kaplan, D. R., Nikolics, K., and Goeddel, D. V. (1991), Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7, 857–866.

    Article  PubMed  CAS  Google Scholar 

  • Biedler, J. L., Roffler-Tarlov, S., Schachner, M., and Freedman, L. S. (1978), Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38, 3751–3757.

    PubMed  CAS  Google Scholar 

  • Bradford, C. S., Sun, L., and Barnes, D. W. (1994), Basic FGF stimulates proliferation and suppresses melanogenesis in cell cultures derived from early zebrafish embryos. Marine Mol. Biol. Biotech. 3, 78–86.

    CAS  Google Scholar 

  • Brustle, O., Jones, K. N., Learish, R. D., Karram, K., Choudhary, K., Wiestler, O. D., Duncan, I. D., and McKay, R. D. (1999), Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Chiappa, S. A., Chi, L. S., Zurwel, R. H., and Raffel, C. (1999), Neurotrophins and Trk receptors in primitive neuroectodermal tumor cell lines. Neurosurgery 45, 1148–1154.

    Article  PubMed  CAS  Google Scholar 

  • Chin, L. S., Yung, W. K., and Raffel, C. (1996), Two primitive neuroectodermal tumor cell lies require an activated insulin-like growth factor I receptor for growth in vitro. Neurosurgery 39, 1183–1190.

    Article  PubMed  CAS  Google Scholar 

  • Christian, C. N., Nelson, P. G., Peacock, J., and Nirenberg, M. (1977), Synapse formation between two clonal cell lines. Science 196, 995–998.

    Article  PubMed  CAS  Google Scholar 

  • Derrington, E. A., Dufay, N., Rudkin, B. B., and Belin, M. F. (1998), Human primitive neuroectodermal tumor cells behave as multipotent neural precursors in response to FGF2. Oncogene 17, 1663–1672.

    Article  PubMed  CAS  Google Scholar 

  • El-Badry, O. M., Romanus, J. A., Helman, L. J., Cooper, M. J., Rechler, M. M., and Israel, M. A. (1989), Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J. Clin. Invest. 84, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Fabricant, R. N., De Larco, J. E., and Todaro, G. J. (1977), Nerve growth factor receptors on human melanoma cells in cultures. Proc. Natl. Acad. Sci. USA 74, 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, H. S., Burger, P. C., Bigner, S. H., Trojanowski, J. Q., Wikstrand, C. J., Halperin, E. C., and Bigner, D. D. (1985), Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283. J. Neuropathol Exp. Neurol. 44, 592–605.

    Article  PubMed  CAS  Google Scholar 

  • Fu, W., Begley, J. G., Killen, M. W., and Mattson M. P. (1999), Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274, 7264–7271.

    Article  PubMed  CAS  Google Scholar 

  • Giard, D. J., Aaronson, S. A., Todaro, G. J., Arnstein, P., Kersey, J. H., Dosik, H., and Parks, W. P. (1973), In vitro cultivation of human tumors; establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417–1423.

    PubMed  CAS  Google Scholar 

  • Greene, L. A. and Tischler, A. S. (1976), Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • Iavarone, A., Lasorela, A., Servidei, T., Riccardi, R., and Mastrangelo, R. (1993), Uptake and storage of m-iodobenzylguanidine are frequent neuronal functions of human neuroblastoma cell lines. Cancer Res. 53, 304–309.

    PubMed  CAS  Google Scholar 

  • Javanovic, J. N., Benfenati, F., Siow, Y. L., Sihra, T. S., Sanghera, J. S., Pelech, S. L., Greengard, P., and Czernik, A. J. (1996), Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc. Natl. Acad. Sci. USA 93, 3679–3683.

    Article  Google Scholar 

  • Kaneko, K., Aulianello, L., Scott, M., Cooper, C. M., Wallace, A. C., James, T. L., Cohen, F. E., and Prusiner, S. B. (1997), Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl. Acad. Sci. USA 94, 10,069–10,074.

    Article  PubMed  CAS  Google Scholar 

  • Kippenberger, A. G., Palmer, D. J., Comer, A. M., Lipski, J., Burtn, L. D., and Christie, D. L. (1999), Localization of the noradrenaline transporter in rat adrenal medulla and PC12 cells. J. Neurochem. 73, 1024–1032.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S. and Millhorn, D. E. (1999), Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. J. Biol. Chem. 274, 20,358–20,365.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, C. A., Mitchell, D. H., Kleinschmidy-DeMasters, B. K., Franklin, W. A., Morse, H. G., Spector, E. B., and Lillehi, K. O. (1992), Characterization of a continuous human glioma cell line DBTRG-05MG; growth kinetics, karyotype, receptor expression, and tumor suppressor gene analyses. In Vitro Cell Dev. Biol. 28, 609–614.

    Article  Google Scholar 

  • Kruttgen, A., Moller, J. C., Heymach, J. V., and Shooter, E. M. (1998), Neurotrophins induce release of neurotrophins by the regulated secretory pathway. Proc. Natl Acad. Sci. USA 95, 9614–9619.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, L. A., Lampson, M. A., and Dunne, A. D. (1993), Exploiting the lacL reporter gene for quantitative analysis of disseminated tumor growth within the brain. Cancer Res. 53, 176–182.

    PubMed  CAS  Google Scholar 

  • Levi, A., Eldreige, J. D., and Peterson, B. M. (1985), Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229, 393–395.

    Article  PubMed  CAS  Google Scholar 

  • Li, R. (1999), Culture methods for selective growth of normal rat and human Schwann cells. Methods Cell Biol. 57, 167–186.

    Article  Google Scholar 

  • Li, S. H., Cheng, A. L., Li, H., and Li, X. J. (1999), Cellular defects and altered gene expression in PC12 cells stably expressing mutant huntingtin. J. Neurosci. 19, 5159–5172.

    PubMed  CAS  Google Scholar 

  • Loo, D. T., Fuquay, J. I., Rawson, C. L., and Barnes, D. W. (1987), Extended culture of mouse embryo cells without senescence: inhibition by serum. Science 236, 200–202.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D., Sakai, Y., Rawson, C., and Barnes, D. (1991), Serial passage of embryonic human astrocytes in serum-free, hormone-supplemented medium. J. Neurosci. Res. 28, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D. T., Althoen, M. C., and Cotman, C. W. (1994), Down regulation of nestin by TGF-beta or serum in SFME cells accompanies differentiation into astrocytes. NeuroReport 5, 1585–1588.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D. T., Althoen, M. C., and Cotman, C. W. (1995), Differentiation of SFME cells into astrocytes is accompanied by induction of glutamine synthetase activity. J. Neurosci. Res. 42, 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D., Bradford, S., Sharps, A., and Barnes, D. (1998), BCL-2 inhibits cell death of serum-free mouse embryo cells caused by EGF deprivation. Cell Biol. Tox. 14, 375–382.

    Article  CAS  Google Scholar 

  • McBurney, M. W., Jones-Villeneuve, E. M., Edwards, M. K., and Anderson, P. J. (1982), Control of muscle and neuronal differentiation in a cultured embryonal carcinoma cell line. Nature 299, 165–167.

    Article  PubMed  CAS  Google Scholar 

  • Nie, Z., Mei, Y., Malek, R. L., Marcuzzi, A., Lee, N. H., and Ramkumar, V. (1999), A role of p75 in NGF-mediated dose-regulation of the A(2A) adenosine receptors in PC 12 cells. Mol. Pharmacol. 56, 947–954.

    PubMed  CAS  Google Scholar 

  • Nishiyama, K., Collodi, P., and Barnes, D. (1993), Regulation of glial fibrillary acidic protein in serum-free mouse embryo (SFME) cells by leukemia inhibitory factor and related peptides. Neurosci. Lett. 163, 114–116.

    Article  PubMed  CAS  Google Scholar 

  • Owens, R. B., Smith, H. S., Nelson-Rees, W. A., and Springer, E. L. (1976), Epithelial cell cultures from normal and cancerous human tissues. J. Natl. Cancer Inst. 56, 843–849.

    PubMed  CAS  Google Scholar 

  • Pance, A., Morgan, K., Guesst, P. C., Bowers, K., Dean, G. E., Culter, D. F., and Jackson, A. P. (1999), A PC12 variant lacking regulated secretory organelles. J. Neurochem. 73, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Radany, E. H., Brenner, M., Besnard, F., Bigornia, V., Bishop, J. M., and Deschepper, C. F. (1992), Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proc. Natl. Acad. Sci. USA 89, 6467–6471.

    Article  PubMed  CAS  Google Scholar 

  • Rawson, C., Loo, D., Hedstrom, O., Schmidt, E., and Barnes, D. (1991), Death of serum-free mouse embryo (SFME) cells caused by EGF deprivation. J. Cell Biol. 113, 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, H. K., Thode, S., Zhou, J., Friedman, G. C., Pardinas, J. R., Barrere, C., Johnson, R. M., and Sah, D. W. (1999), Immortalized human dorsal root ganglion cells differentiate into neurons with nociceptive properties. J. Neurosci. 19, 5420–5428.

    Google Scholar 

  • Richelson, E. (1973), Regulation of tyrosine hydroxylase activity in mouse neuroblastoma clone N1E-115. J. Neurochem. 21, 1139–1145.

    Article  PubMed  CAS  Google Scholar 

  • Rostomily, R. C., Bermingham-McDonogh, O., Berger, M. S., Tapscott, S. J., Reh, T. A., and Olson, J. M. (1997), Expression of neurogenic basic helix-loop-helix genes in primitive neuroectodermal tumors. Cancer Res. 57, 3526–3531.

    PubMed  CAS  Google Scholar 

  • Sakai, Y., Rawson, C., Lindburg, K., and Barnes, D. (1990), Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum free-derived mouse embryo cells. Proc. Natl. Acad. Sci. USA 87, 8378–8382.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J., Culp, W., and Brandt, B. L. (1974), Clonal cell lines from the rat central nervous system. Nature 249, 224–225.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, N. T., Lessser, S. S., and Lo, D. C. (1997), Neurotrophin regulation of ionic currents and cell size depends on cell context. Proc. Natl. Acad. Sci. USA 94, 5917–5922.

    Article  PubMed  CAS  Google Scholar 

  • Singh, N. N. and Barnes, D. W. (2000), Fibroblast growth factor regulation of development in primary cultures of early zebrafish embryo cells. Marine Biol., submitted.

    Google Scholar 

  • Slinskey, A., Helmrich, A., Barnes, D., and Pipas, J. M. (1999), SV40 large T antigen J domain and RB-binding motif are sufficient to block apoptosis induced by growth factor withdrawal in a neuronal stem cell line. J. Virol., in press.

    Google Scholar 

  • Solem, M., Rawson, C., Lindburg, K.,, and Barnes, D. (1990), Transforming growth factor beta regulates cystatin C in serum-free mouse embryo (SFME) cells. Biochem. Biophy. Res. Commun. 172, 945–951.

    Article  CAS  Google Scholar 

  • Su, W., Ueno-Yamanouchi, A., Hakayama, H., and Doi, K. (1998), Encephalomyocarditis virus infection in PC 12 and C6 cells. Int. J. Exp. Pathol. 79, 411–416.

    Article  PubMed  CAS  Google Scholar 

  • Sun, L., Bradford, S., Ghosh, C., Collodi, P., and Barnes, D. (1995), ES-like cell cultures derived from early zebrafish embryos. Mole. Marine Biol. Biotech. 4, 193–199.

    CAS  Google Scholar 

  • Syapin, P. J., Salvaterra, P. M., and Engelhardt, J. K. (1982), Neuronal-like features of TE671 cells: presence of a functional nicotinic cholinergic receptor. Brain Res. 213, 365–377.

    Article  Google Scholar 

  • Thomson, J. W., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. I., Marshall, V S., and Jones, J. M. (1998), Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Tumilowicz, J. I., Nichols, W. W., Cholon, J. J., and Greene, A. E. (1970), Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 30, 2110–2118.

    PubMed  CAS  Google Scholar 

  • Walowitz, J. L. and Roth J. A. (1999), Activation of ERK1 and ERK2 is required for manganese-induced neurite outgrowth in rat pheochromocytoma (PC 12) cells. J. Neurosci. Res. 57, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Weisz, P. V., Solem, M., and Barnes, D. (1993), Expression of a TGFβ regulated, brain-specific mRNA in serum-free mouse embryo (SFME) cells. Neurosci. Lett. 154, 153–156.

    Article  PubMed  CAS  Google Scholar 

  • Westphal, M. and Meissner, H. (1999), Establishing human glioma-derived cell lines. Methods Cell Biol. 57, 147–165.

    Article  Google Scholar 

  • Yoshida, H. Date, I. Shingo, T. Fujiwara, K. Mihoshi, Y. Furuta, T. and Ohmoto, T. (1999), Evaluation of reaction of primate brain to grafted PC12 cells. Cell Transplant. 8, 427–430.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Murayama, K., Singh, N.N., Helmrich, A., Barnes, D.W. (2001). Neural Cell Lines. In: Fedoroff, S., Richardson, A. (eds) Protocols for Neural Cell Culture. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-207-4:219

Download citation

  • DOI: https://doi.org/10.1385/1-59259-207-4:219

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-902-5

  • Online ISBN: 978-1-59259-207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics