Skip to main content

Affinity Chromatography of Oligosaccharides and Glycopeptides with Immobilized Lectins

  • Protocol

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Sugar moieties on the cell surface play one of the most important roles in cellular recognition. To elucidate the molecular mechanism of these cellular phenomena, assessment of the structure of sugar chains is indispensable. However, it is difficult to elucidate the structures of cell surface oligosaccharides owing to two technical problems. The first is the difficulty in fractionating various oligosaccharides heterogeneous in the number, type, and substitution patterns of outer sugar branches. The second problem is that very limited amounts of material can be available, which makes it difficult to perform detailed structural studies. Lectins are proteins with sugar binding activity. Each lectin binds specifically to a certain sugar sequence in oligosaccharides and glycopeptides. To overcome these problems, lectins can serve as very useful tools. Recently, many attempts have been made to fractionate oligosaccharides and glycopeptides on immobilized lectin columns. The use of a series of immobilized lectin columns, whose sugar binding specificities have been precisely elucidated, enables us to fractionate a very small amount of radioactive oligosaccharides or glycopeptides (∼10 ng depending on the specific activity) into structurally distinct groups. In this chapter, we summarize the serial lectin-Sepharose affinity chromatographic technique for rapid, sensitive, and specific fractionation and analysis of asparagine-linked oligosaccharides of glycoproteins.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Article  PubMed  CAS  Google Scholar 

  2. Tsuji, T., Irimura, T., and Osawa, T. (1981) The carbohydrate moiety of Band 3 glycoprotein of human erythrocyte membrane. J. Biol. Chem. 256, 10,497–10,502.

    PubMed  CAS  Google Scholar 

  3. Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N. (1984) Structure of branched lactosaminoglycan, the carbohydrate moiety of Band 3 isolated from adult human erythrocytes. J. itBiol. Chem. 259, 8260–8273.

    CAS  Google Scholar 

  4. Merkle, R. K. and Cummings, R. D. (1987) Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. J. itBiol. Chem. 282, 8179–8189.

    Google Scholar 

  5. Fukuda, M. (1985) Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochem. Biophys. Acta. 780, 119–150.

    PubMed  CAS  Google Scholar 

  6. Green, E. D. and Baenziger, J. U. (1988) Asparagine-linked oligosaccharides on lutropin, follitropin, and thyrotropin: I. Structural elucidation of the sulfated and sialylated oligosaccharides on bovine, ovine, and human pituitary glycoprotein hormones. J. itBiol. Chem. 263, 25–35.

    CAS  Google Scholar 

  7. Nakata, N., Furukawa, K., Greenwalt, D. E., Sato, T., and Kobata, A. (1993) Structural study of the sugar chains of CD36 purified from bovine mammary epithelial cells: occurrence of novel hybrid type sugar chains containing the Neu5Aca2-6GalNAcβ1-4GlcNAc and the Manα1-2Manα1-3Manα1-6Man groups. Biochemistry 32, 4369–4383.

    Article  PubMed  CAS  Google Scholar 

  8. Fukuda, M., Kondo, T., and Osawa, T. (1976) Studies on the hydrazinolysis of glycoproteins. Core structures of oligosaccharides obtained from porcine thyroglobulin and pineapple stem bromelain. J. itBiochem. 80, 1223–1232.

    CAS  Google Scholar 

  9. Takasaki, S. and Kobata, A. (1978) Microdetermination of sugar composition by radioisotope labeling. Meth. Enzymol. 50, 50–54.

    Article  PubMed  CAS  Google Scholar 

  10. Tai, T., Yamashita, K., Ogata, M. A., Koide, N., Muramatsu, T., Iwashita, S., Inoue, Y., and Kobata, A. (1975) Structural studies of two ovalbumin glycopeptides in relation to the endo-β-N-acetylglucosaminidase specificity. J. itBiol Chem. 250, 8569–8575.

    CAS  Google Scholar 

  11. Rupley, J. A. (1964) The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrates for lysozyme. Biochem. Biophys. Acta. 83, 245–255.

    PubMed  CAS  Google Scholar 

  12. Krusius, T., Finne, J., and Rauvala, H. (1978) The poly(glycosyl) chains of glycoproteins. Characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane. Eur. J. Biochem. 92, 289–300.

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto, K., Tsuji, T., Tarutani, O., and Osawa, T. (1984) Structural changes of carbohydrate chains of human thyroglobulin accompanying malignant transformations of thyroid grands. Eur. J. Biochem. 143, 133–144

    Article  PubMed  CAS  Google Scholar 

  14. Tsuji, T., Irimura, T., and Osawa, T. (1980) The carbohydrate moiety of Band-3 glycoprotein of human erythrocyte membranes. Biochem. J. 187, 677–686.

    PubMed  CAS  Google Scholar 

  15. Baenziger, J. U. and Fiete, D. (1979) Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. itBiol. Chem. 254, 9795–9799.

    CAS  Google Scholar 

  16. Irimura, T., Tsuji, T., Yamamoto, K., Tagami, S., and Osawa, T. (1981) Structure of a complex type sugar chain of human glycophorin A. Biochemistry 20, 560–566.

    Article  PubMed  CAS  Google Scholar 

  17. Shibuya, N., Goldstein, I. J., Van Damme, E. J. M., and Peumans, W. J. (1988) Binding properties of a mannose-specific lectin from the snowdrop (Galanthus nivalis) bulb. J. Biol. Chem. 263, 728–734.

    PubMed  CAS  Google Scholar 

  18. Yamamoto, K., Tsuji, T., Matsumoto, I., and Osawa, T. (1981) Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry 20, 5894–5899.

    Article  PubMed  CAS  Google Scholar 

  19. Ogata, S., Muramatsu, T., and Kobata, A. (1975) Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J. Biochem. 78, 687–696.

    PubMed  CAS  Google Scholar 

  20. Krusius, T., Finne, J., and Rauvala, H. (1976) The structural basis of the different affinities of two types of acidic N-glycosidic glycopeptides from concanavalin A-Sepharose. FEBS Lett. 71, 117–120.

    Article  CAS  Google Scholar 

  21. Kornfeld, K., Reitman, M. L., and Kornfeld, R. (1981) The carbohydrate-binding specificity of pea and lentil lectins. J. Biol. Chem. 256, 6633–6640

    PubMed  CAS  Google Scholar 

  22. Katagiri, Y., Yamamoto, K., Tsuji, T., and Osawa, T. (1984) Structural requirements for the binding of glycopeptides to immobilized vicia faba (fava) lectin. Carbohydr. Res. 129, 257–265.

    Article  CAS  Google Scholar 

  23. Yamamoto, K., Tsuji, T., and Osawa, T. (1982) Requirement of the core structure of a complex type glycopeptide for the binding to immobilized lentil-and pea-lectins. Carbohydr. Res. 110, 283–289.

    Article  PubMed  CAS  Google Scholar 

  24. Yamashita, K., Hitoi, A., and Kobata, A. (1983) Structural determinants of Phaseolus vulgaris erythroagglutinating lectin for oligosaccharides. J. Biol. Chem. 258, 14,753–14,755.

    PubMed  CAS  Google Scholar 

  25. Cummings, R. D. and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J. Biol. Chem. 257, 11,230–11,234.

    PubMed  CAS  Google Scholar 

  26. Cummings, R. D. and Kornfeld, S. (1984) The distribution of repeating [Galβ1,4GlcNAcβ1,3] sequences in asparagine-linked oligosaccharides of the mouse lymphoma cell line BW5147 and PHAR2.1. J. Biol. Chem. 259, 6253–6260.

    PubMed  CAS  Google Scholar 

  27. Yamashita, K., Totani, K. T., Ohkura, Takasaki, S., Goldstein, I. J., and Kobata, A. (1987) Carbohydrate binding properties of complex type oligosaccharides on immobilized Datura stramonium lectin. J. Biol. Chem. 262, 1602–1607.

    PubMed  CAS  Google Scholar 

  28. Irimura, T. and Nicolson, G. L. (1983) Interaction of pokeweed mitogen with poly (N-acetyllactosamine) type carbohydrate chains. Carbohydr. Res. 120, 187–195.

    Article  PubMed  CAS  Google Scholar 

  29. Kawashima, H., Sueyoshi, S., Li, H., Yamamoto, K., and Osawa, T. (1990) Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconjugate J. 7, 323–334.

    Article  CAS  Google Scholar 

  30. Wang, W.-C. and Cummings, R. D. (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex type Asn-linked oligosaccharides containing terminal sialic acid-linked a-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–4585.

    PubMed  CAS  Google Scholar 

  31. Kawaguchi, T., Matsumoto, I., and Osawa, T. (1974) Studies on hemagglutinins from Maackia amurensis seeds. J. Biol. Chem. 249, 2786–2792.

    PubMed  CAS  Google Scholar 

  32. Sueyoshi, S., Yamamoto, K., and Osawa, T. (1988) Carbohydrate binding specificity of a beetle (Allomyrina dichotoma) lectin. J. Biochem. 103, 894–899.

    PubMed  CAS  Google Scholar 

  33. Yamashita, K., Umetsu, K., Suzuki, T., Iwaki, Y., Endo, T., and Kobata, A. (1988) Carbohydrate binding specificity of immobilized Allomyrina dichotoma lectin II. J. Biol. Chem. 263, 17,482–17,489.

    PubMed  CAS  Google Scholar 

  34. Shibuya, N., Goldstein, I. J., Broekaert, W. F., Lubaki, M. N., Peeters, B., and Peumans. W. J. (1987) Fractionation of sialylated oligosaccharides, glycopeptides, and glycoproteins on immobilized elderberry (Sambucus nigra L.) bark lectin. Arch. Biochem. Biophys. 254, 1–8.

    Article  PubMed  CAS  Google Scholar 

  35. Shibuya, N., Goldstein, I. J., Broekaert, W. F., Lubaki, M. N., Peeters, B., and Peumans, W. J. (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(α2-6)Gal/ GalNAc sequence. J. Biol. Chem. 262, 1596–1601.

    PubMed  CAS  Google Scholar 

  36. Konami, Y., Yamamoto, K., Osawa, T., and Irimura, T. (1994) Strong affinity of Maackia amurensis hemagglutinin (MAH) for sialic acid-containing Ser/Thr-linked carbohydrate chains of N-terminal octapeptides from human glycophorin A. FEBS Lett. 342, 334–338.

    Article  PubMed  CAS  Google Scholar 

  37. Osawa, T. and Tsuji, T. (1987) Fractionation and structural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Ann. Rev. Biochem. 56, 21–42.

    Article  PubMed  CAS  Google Scholar 

  38. Osawa, T. (1989) Recent progress in the application of plant lectins to glycoprotein chemistry. Pure & Appl. Chem. 61, 1283–1292.

    Article  CAS  Google Scholar 

  39. Tsuji, T., Yamamoto, K., and Osawa, T. (1993) Affinity chromatography oligosaccharides and glycopeptides with immobilized lectins, in Molecular Interaction in Bioseparations, (Ngo, T.T., ed.), Plenum Press, New York, pp. 113–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yamamoto, K., Tsuji, T., Osawa, T. (2002). Affinity Chromatography of Oligosaccharides and Glycopeptides with Immobilized Lectins. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-169-8:917

Download citation

  • DOI: https://doi.org/10.1385/1-59259-169-8:917

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-940-7

  • Online ISBN: 978-1-59259-169-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics