Skip to main content

Neurons

  • Protocol

Part of the book series: Neuromethods ((NM,volume 23))

Abstract

There are several preparations that can be utilized to study the development of the vertebrate nervous system and the physiology and pharmacology of individual vertebrate neurons. These include both in vivo and in vitro preparations. The latter include brain slices (both conventional “thick” and new “thin” slices) as well as organotypic central nervous system (CNS) cultures and primary dissociated cell cultures. Each of these preparations can be appropriately utilized for particular kinds of studies and no single one of these is best for all neurobiological studies. This chapter will focus on the system of primary dissociated cell cultures of different parts of the mammalian CNS. These preparations have become more and more popular for studying issues related to the growth and development of the nervous system, the expression of neuron specific properties, and cellular physiology and pharmacology of mammalian CNS function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ahmed Z., Walker P. S. and Fellows R. E. (1983) Properties of neurons from dissociated fetal rat brain serum-free culture. J. Neurosd. 3, 2448–2462.

    CAS  Google Scholar 

  2. Banker G. A. (1980) Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809, 810.

    Article  PubMed  CAS  Google Scholar 

  3. Banker G. A. and Cowan M. (1977) Rat hippocampal neurons in dispersed cell culture. Brain Res. 126, 397–425.

    Article  PubMed  CAS  Google Scholar 

  4. Banker G. A. and Cowan W. M. (1979) Further observations of hippocampal neurons in dispersed cell culture. J. Comp. Neurol. 187, 469–494.

    Article  PubMed  CAS  Google Scholar 

  5. Bartlett W. P. and Banker G. A. (1984) An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. J. Neurosd. 4, 1944–1953.

    CAS  Google Scholar 

  6. Bekkers J. M. and Stevens C. F. (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233.

    Article  PubMed  CAS  Google Scholar 

  7. Bekkers J. M. and Stevens C. F. (1990) Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729.

    Article  PubMed  CAS  Google Scholar 

  8. Borg J., Spitz B., Hamel G., and Mark J. (1985) Selective culture of neurons from rat cerebral cortex: morphological characterization, glutmate uptake, and related enzymes during maturation in various culture media. Dev. Br. Res. 18, 37–49.

    Article  CAS  Google Scholar 

  9. Bottenstein J. E. (1983) Defined media for dissociated neural cultures, in Current Methods in Cellular Neurobiology (Barker J. L. and McKelvy J. F., eds.), Wiley, New York, pp. 107–130.

    Google Scholar 

  10. Brenneman D. E., Neale E. A., Habig W. H., Bowers L. M., and Nelson P. G. (1983) Developmental and neurochemical specificity of neuronal deficits produced by electrical impulse blockade in dissociated spinal cord cultures. Dev. Br. Res. 9, 13–27.

    Article  Google Scholar 

  11. Brenneman D. E., Fitzgerald S., and Nelson P. G. (1984) Interactions between trophic and electrical activity in spinal cord cultures. Dev. Br. Res. 15, 211–217.

    Article  Google Scholar 

  12. Brenneman D. E. and Eiden L. E. (1986) Vasoactive intestinal peptide and electrical activity influence neuronal survival. Proc. Natl. Acad. Sd. 83, 1159–1162.

    Article  CAS  Google Scholar 

  13. Brewer G. J., Peterson C., and Cotman C. W. (1987) Long term survival of rat hippocampal neurons at low density: advantages of low oxygen. Soc. Neurosd. Abst. 13, 256.

    Google Scholar 

  14. Buchhalter J. R. and Dichter M. A. (1991) Electrophysiological comparison of pyramidal and stellate nonpyramidal neurons in dissociated cell culture of rat hippocampus. Brain Res. Bull. 26, 333–338.

    Article  PubMed  CAS  Google Scholar 

  15. Buse E. (1985) A method for the collection of defined areas from the embryonic rat brain for cell and tissue culture. J. Neurosd. Methods 14, 177–186.

    Article  CAS  Google Scholar 

  16. Caceres A., Banker G. A., and Binder L. (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosd. 6, 714–722.

    CAS  Google Scholar 

  17. Choi D. W. (1987a) Ionic dependence of glutamate neurotoxicity. J. Neurosci. 7, 369–379.

    PubMed  CAS  Google Scholar 

  18. Choi D. W., Maulucci-Gedde M., and Krigstein A. R. (1987b) Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 7, 357–368.

    PubMed  CAS  Google Scholar 

  19. Choi D. W., Koh J., and Peters S. (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMD A antagonists. J. Neurosci. 8, 185–196.

    PubMed  CAS  Google Scholar 

  20. Dal Toso R., Giorgi O., Soranzo C., Kirschner G., Ferrari G., Favaron M., Benvegnu D., Presti D., Vicini S., Toffano G., Azzone G. F., and Leon A. (1988) Development and survival of neurons in dissociated fetal mesencephalic serum-free culture: Effects of cell density and of an adult mammalian striatal-derived neuronotrophic factor (SDNF). J. Neurosci. 8(3), 733–745.

    Google Scholar 

  21. De Deyn P. P. and MacDonald R. L. (1987) CGS 9896 and ZK 91296, but not CGS 8216 and RO 15-1788, are pure benzodiazepine receptor antagonists on mouse neurons in culture. J. Pharm. Exp. Therap. 2421, 48–55.

    Google Scholar 

  22. Delfs J. and Dichter M. (1983) Effects of somatostatin on cortical neurons in culture. J. Neurosci. 3, 1176–188.

    PubMed  CAS  Google Scholar 

  23. Dichter M. A. (1978) Rat cortical neurons in cell culture: culture methods, cell morphology, electrophysiology, and synapse formation. Brain Res. 149, 279–293.

    Article  PubMed  CAS  Google Scholar 

  24. Dotti C. G., Sullivan C. A., and Banker G. A. (1988) The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468.

    PubMed  CAS  Google Scholar 

  25. Dubinsky J. M. (1987) Development of inhibitory synapses among striatal neurons in vitro. J. Neurosci. 9, 3955–3965.

    Google Scholar 

  26. Forsythe I. D. and Clements J. D. (1990) Presynaptic glutamate receptors depress excitatory monosynaptic transmission between mouse hippocampal neurones. J. Physiol. 429, 1–16.

    PubMed  CAS  Google Scholar 

  27. Frosch M., Barnes D., and Dichter M. (1983) Synapses between hippocampal neurons in culture. Soc. Neurosci. Abst. 9, 518.

    Google Scholar 

  28. Harrison N. L. (1990) On the presynaptic action of baclofen at inhibitory synapses between cultures rat hippocampal neurones. J. Physiol. 422, 433–446.

    PubMed  CAS  Google Scholar 

  29. Horie S. and Kim S. U. (1984) Improved survival and differentiation of newborn and adult mouse neurons in F12-defined medium by fibronectin. Brain Res. 294, 178–181.

    Article  PubMed  CAS  Google Scholar 

  30. Kaufman L. and Barrett J. (1983) Serum factor supporting long-term survival of rat central neurons in culture. Science 220, 1394–1396.

    Article  PubMed  CAS  Google Scholar 

  31. Kawaguchi Y. S. and Hama K. (1987) Two types of nonpyramidal cells in the rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res. 411, 190–195.

    Article  PubMed  CAS  Google Scholar 

  32. Kay A. R. and Wong R. K. S. (1986) Isolation of neurons suitable for patch clamping from adult mammalian central nervous system. J. Neurosci. Methods 16, 227–238.

    Article  PubMed  CAS  Google Scholar 

  33. Kriegstein A. and Dichter M. (1983) Morphological classification of rat cortical neurons in cell culture. J. Neurosci. 3, 1634–1647.

    PubMed  CAS  Google Scholar 

  34. Lacaille J. C. and Schwartzkroin P. A. (1988a) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region I: Intracellular response characteristics, synaptic responses, and morphology. J. Neutvsd 8, 1400–1410.

    CAS  Google Scholar 

  35. Lacaille J. C. and Schwartzkroin P. A. (1988b) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region II: Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J. Neutvsd. 8, 1411–1424.

    CAS  Google Scholar 

  36. Legido A., Reichlin S., Dichter M., and Buchhalter J. R. (1990) Expression of somatostatin and GAB A immunoreactivity in cultures of rat hippocampus. Peptides 11, 103–109.

    Article  PubMed  CAS  Google Scholar 

  37. Martin D. P., Wallace T. L., and Johnson E. M. (1990) Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: Evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J. Neurosci. 10, 184–193.

    PubMed  CAS  Google Scholar 

  38. Masuko S., Nakajima Y., Nakajima S., and Yamaguchi K. (1986) Noradrener-gic neurons from the locus ceruleus in dissociated cell culture: culture methods, morphology, and electrophysiology. J. Neurosd. 6, 3229–3241.

    CAS  Google Scholar 

  39. Mattson M. P., Dou P., and Kater S. B. (1988a) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J. Neurosd. 8, 2087–2100.

    CAS  Google Scholar 

  40. Mattson M. P. and Kater S. B. (1988b) Isolated hippocampal neurons in cyropreserved long-term cultures: Development of neuroarchitechture and sensitivity to NMD A. Int. J. Dev. Neurosd. 6, 439–452.

    Article  CAS  Google Scholar 

  41. Mattson M. P., Murrain M., Guthrie P. B., and Kater S. B. (1989) Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitechture. J. Neurosci. 9, 3728–3733.

    PubMed  CAS  Google Scholar 

  42. Mayer M. and Westbrook G. (1985) The action of N-methyl-D-aspartic acid on mouse spinal neurones in culture. J. Physiol. 361, 65–90.

    PubMed  CAS  Google Scholar 

  43. Mayer M. L., Vyklicky L., and Clements J. (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338, 425–127.

    Article  PubMed  CAS  Google Scholar 

  44. Meier E., Drejer J., and Schousboe A. (1984) GABA induces functionally active low-affinitive GABA receptors on cultured cerebellar granule cells. J. Neurochem. 43, 1737–1744.

    Article  PubMed  CAS  Google Scholar 

  45. Messer A., Snodgrass G. L., and Maskin P. (1984) Enhanced survival of cultured cerebellar Purkinje cells by plating on antibody to Thy-l. Cell. Mol. Neurobiol. 4, 285–290.

    Article  PubMed  CAS  Google Scholar 

  46. Miller R. J. (1987) Multiple calcium channels and neuronal function. Srience 235, 46–52.

    Article  CAS  Google Scholar 

  47. Misgeld U. and Dietzel I. (1989) Synaptic potentials in the rat neostriatum in dissociated embryonic cell culture. Brain Res. 492, 149–157.

    Article  PubMed  CAS  Google Scholar 

  48. Nakayama T., Sugiyama H., and Furuya S. (1989) Basal lamina enhances hippocampal neurite outgrowth in vitro. Dev. Br. Res. 49, 145–149.

    Article  CAS  Google Scholar 

  49. Nelson P. G., Pun R. Y. K., and Westbrook G. L. (1986) Synaptic excitation in cultures of mouse spinal cord neurons: Receptor pharmacology and behavior of synaptic currents. J. Physiol. 372, 169–190.

    PubMed  CAS  Google Scholar 

  50. Orr D. J. and Smith R. A. (1988) Neuronal maintenance and neurite extension of adult mouse neurones in nonneuronal cell-reduced cultures is dependent on substratum coating. J. Cell Sci. 91, 555–561.

    PubMed  Google Scholar 

  51. Peacock J. H. (1979a) Electrophysiology of dissociated hippocmpal cultures from fetal mice. Brain Res. 169, 247–260.

    Article  PubMed  CAS  Google Scholar 

  52. Peacock J. H., Rush D. F., and Mathers L. H. (1979b) Morphology of dissociated hippocampal cultures from fetal mice. Brain Res. 169, 231–246.

    Article  PubMed  CAS  Google Scholar 

  53. Peacock J. H. and Walker C. R. (1983) Development of calcium action potentials in mouse hippocampal cell cultures. Dev. Brain Res. 8, 39–52.

    Article  CAS  Google Scholar 

  54. Peterson C., Neal J. H., and Cotman C. W. (1989) Development of N-methyl-D-aspartate excitotoxicity in cultured hippocampal neurons. Dev. Br. Res. 48, 187–195.

    Article  CAS  Google Scholar 

  55. Phillips J., Buchhalter J. R., and Winokour A. (1990) Neurotoxic effects of thyrotropin releasing hormone on fetal rat hippocampal neurons. Soc. Neurosci. Absts. 16, 518.

    Google Scholar 

  56. Rogawski M. A. (1986) Single voltage-dependent potassium channels in cultured rat hippocampal neurons. J. Neurophys. 56, 481–493.

    CAS  Google Scholar 

  57. Rosenberg P. A. and Aizenman E. (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci. Lett. 103, 162–168.

    Article  PubMed  CAS  Google Scholar 

  58. Rothman S. M. (1983) Synaptic activity mediates death of hypoxic neurons. Science 220, 536–537.

    Article  PubMed  CAS  Google Scholar 

  59. Rothman S. M. (1985a) The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5, 1483–1489.

    PubMed  CAS  Google Scholar 

  60. Rothman S. M. and Samaie M. (1985b) Physiology of excitatory synaptic transmission in cultures of dissociated rat hippocampus. J. Neurophys. 54, 701–713.

    CAS  Google Scholar 

  61. Rothman S. M., Thurston J. H., and Hauhart R. E. (1987) Delayed neurotoxicity of excitatory amino acids in vitro. Neuroscience 22, 471–480.

    Article  PubMed  CAS  Google Scholar 

  62. Sah P., Gibb A. J., and Gage P. W. (1988) Potassium current activated by depolarization of dissociated neurons from adult guinea pig hippocampus. J. Gen. Physiol. 92, 263–278.

    Article  PubMed  CAS  Google Scholar 

  63. Schwartzkroin P. A. and Mathers L. H. (1978) Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res. 157, 1–10.

    Article  PubMed  CAS  Google Scholar 

  64. Segal M. (1983) Rat hippocampal neurons in culture: Responses to electrical and chemical stimuli. J. Neurophys. 50–56, 1249–1264.

    Google Scholar 

  65. Segal M. and Barker J. (1984) Rat hippocmpal neurons in culture: Potassium conductances. J. Neurophys. 51, 1409–1433.

    CAS  Google Scholar 

  66. Shahar A., de Vellis J., Vernadakis A., and Haber B. (eds.) (1989) A Dissection and Tissue Culture Manual of the Neruous System. Liss, New York.

    Google Scholar 

  67. Smith S. M., Zorec R., and McBurney R. N. (1989) Conductance states activated by glycine and GABA in rat cultured spinal neurones. J. Memb. Biol. 108, 45–52.

    Article  CAS  Google Scholar 

  68. Snodgrass S. R., White W. R., and Dichter M. (1980) Biochemical correlates of GABA function in rat cortical neurons in culture. Brain Res. 190, 123–138.

    Article  PubMed  CAS  Google Scholar 

  69. Tang C.-M., Dichter M., and Morad M. (1989) Quisqualate activates a rapidly inactivating high-conductance ionic channel in hippocampal neurons. Science 243, 1474–1477.

    Article  PubMed  CAS  Google Scholar 

  70. Tang C.-M., Dichter M., and Morad M. (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Nail. Acad. Set 87, 6445–6449.

    Article  CAS  Google Scholar 

  71. Trussell L. O. and Jackson M. B. (1987) Dependence of an adenosine-acti-vated potassium current on a GTP-binding protein in mammalian central neurons. J. Neurosd. 7, 3306–3316.

    CAS  Google Scholar 

  72. Wang H.-L., Bogen C., Reisine T., and Dichter M. (1989) Somatostatin-14 and somatostatin-28 induce opposite effects on potassium currents in rat neocortical neurons. Proc. Natl. Acad. Sd. 86, 9616–9620.

    Article  CAS  Google Scholar 

  73. Wang H.-L., Dichter M. and Reisine T. (1990) Lack of cross desensitization of somatostatin-14 and somatostatin-28 receptors coupled to potassium channels in rat neocortical neurons. Molec. Pharm. 38, 357–361.

    PubMed  CAS  Google Scholar 

  74. Whately S. A., Hall C., and Lim L. (1981) Hypothalamic neurons in dissociated cell culture: The mechanism of increased survival times in the presence of nonneuronal cells. J. Neurochetn. 36, 2052–2056.

    Article  Google Scholar 

  75. Wilkinson M., Gibson C. J., Bressler B. K, and Inman D. R. (1974) Hypothalamic neurons in dissociated cell culture. Brain Res. 82, 129–138.

    Article  PubMed  CAS  Google Scholar 

  76. Yaari Y., Hamon B., and Lux H. D. (1987) Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science 235, 680–682.

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto M., Steinbusch H. W. M., and Jessell T. M. (1981) Differentiated properties of identified serotonin neurons in dissociated cultures of embryonic rat brain stem. J. Cell. Biol. 91, 142–152.

    Article  PubMed  CAS  Google Scholar 

  78. Yong V. W., Horie H., and Kim S. U. (1988) Comparison of six different substrata on the plating efficiency, differentiation, and survival of human dorsal root ganglion neurones in culture. Dev. Neurosd. 10, 222–230.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 The Humana Press Inc. Totowa, New Jersey

About this protocol

Cite this protocol

Buchhalter, J.R., Dichter, M.A. (1992). Neurons. In: Boulton, A.A., Baker, G.B., Walz, W. (eds) Practical Cell Culture Techniques. Neuromethods, vol 23. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-214-0:241

Download citation

  • DOI: https://doi.org/10.1385/0-89603-214-0:241

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-214-9

  • Online ISBN: 978-1-59259-628-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics