Skip to main content

Isolation and Handling of Recombinant Vaccinia Viruses

  • Protocol
Practical Molecular Virology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 8))

Abstract

In Chapter 20, a general procedure was described for the construction of the intermediate vectors necessary for the insertion of foreign DNA sequences into the vaccinia virus (Vv) genome. The principles and basic methodology for the isolation of recombinant vaccinia viruses will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ensinger, M. J. (1982) Isolation and genetic characterization of temperature-sensitive mutants of vaccinia virus WR. J. Virol 43, 778–790.

    PubMed  CAS  Google Scholar 

  2. Drillien, R., Spehner, D., and Kirn, A. (1982) Complementation and genetic linkage between vaccinia virus temperature-sensitive mutants. Virology 119, 372–381.

    Article  PubMed  CAS  Google Scholar 

  3. Nakano, E., Panicah, D., and Paoletti, E. (1982) Molecular genetics of vaccinia virus Demonstration of marker rescue. Proc. Natl. Acad. Sa. USA 79, 1593–1596.

    Article  CAS  Google Scholar 

  4. Condit, R. C, Motyczka, A., and Spizz, G. (1983) Isolation, characterization, and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology 128, 429–443.

    Article  PubMed  CAS  Google Scholar 

  5. Drillien, R. and Spehner, D. (1983) Physical mapping of vaccinia virus temperaturesensitive mutations. Virology 131, 385–393.

    Article  PubMed  CAS  Google Scholar 

  6. Tartaglia, J. and Paoletti, E. (1985) Physical mapping and DNA sequence analysis of the rifampicin resistance locus in vaccinia virus Virology 147, 394–404.

    Article  PubMed  CAS  Google Scholar 

  7. Baldick, C J. and Moss, B. (1987) Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an M 62,000 polypeptide. Virology 156, 138–145.

    Article  PubMed  CAS  Google Scholar 

  8. Hruby, D. E. and Ball, L. A. (1982) Mapping and identification of the vaccinia virus thymidine kinase gene. J. Virol. 43, 403–409.

    PubMed  CAS  Google Scholar 

  9. Jones, E. V. and Moss, B. (1984) Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA. J. Virol. 49, 72–77.

    PubMed  CAS  Google Scholar 

  10. Panicali, D. and Paoletti, E. (1982) Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad Sci. USA 79, 4927–4931.

    Article  PubMed  CAS  Google Scholar 

  11. Mackett, M., Smith, G. I., and Moss, B. (1982) Vaccinia virus, a selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 79, 7415–7419.

    Article  PubMed  CAS  Google Scholar 

  12. Mackett, M., Smith, G. I., and Moss, B. (1984) General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol 49, 857–864.

    PubMed  CAS  Google Scholar 

  13. Chakrabaru, S., Brechling, K., and Moss, B. (1985) Vaccinia virus expression vector: Coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5, 3403–3409.

    Google Scholar 

  14. Panicali, D., Grzelecki, A., and Huang, C. (1986) Vaccinia virus vectors utilizing the β-galactosidase assay for rapid selection of recombinant viruses and measurement of gene expression. Gene 47, 93–99.

    Article  Google Scholar 

  15. Rhim, J. S., Cho, H. Y, and Huebner, R.J. (1975) Nonproducer human cells induced by murine sarcoma virus. Int. J. Cancer 15, 23–29.

    Article  PubMed  CAS  Google Scholar 

  16. Southern, E. (1975) Detection of specific sequences among DNA fragments seperated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  17. Joklik, W. K (1962) The preparation and characterization of highly purified radioactively labeled poxvirus. Btochim. Biophys. Acla 61, 292–302.

    Google Scholar 

  18. DeFilippes, F. M. (1976) Restriction enzyme digests of rapidly renaturing fragments of vaccinia virus DNA. J. Virol. 17, 227–238.

    CAS  Google Scholar 

  19. Plantrose, D. N., Nishimura, C, and Salzman, N. P. (1962) The purification of vaccinia virus from cell cultures. Virology 18, 294–301.

    Article  Google Scholar 

  20. Franke, C. A., Rice, C. M., Strauss, J. H., and Hruby, D. E. (1985) Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol. Cell. Biol. 5, 1918–1924.

    PubMed  CAS  Google Scholar 

  21. Bertholet, C, Drillien, R., and Wittek, R. (1985) One hundred base pairs flanking sequence of a vaccinia virus late gene are sufficient to temporarily regulate transcription. Proc. Natl. Acad. Sci. USA 82, 2096–2100.

    Article  PubMed  CAS  Google Scholar 

  22. Franke, C. A. and Hruby, D. E. (1988) Use of the gene encoding neomycin phosphotransferase II to convect linked markers into the vaccinia virus genome Nucleic Acids Res. 16, 1634.

    Article  PubMed  CAS  Google Scholar 

  23. Boyle, D. B. and Coupar, B. E. H. (1988) A dominant selectable marker for the construction of recombinant poxviruses. Gene 65, 123–128.

    Article  PubMed  CAS  Google Scholar 

  24. Falkner, F. G. and Moss, B. (1988) Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors J Virol 62, 1849–1854.

    PubMed  CAS  Google Scholar 

  25. Patel, D. D., Ray, C. A., Drucker, R. P., and Pickup, D. J. (1988) A poxvirus-derived vector that directs high levels of expressed and cloned genes in mammalian cells. Proc. Natl. Acad Sci. USA 9931–9935.

    Google Scholar 

  26. Studier, F. W. and Moffat, B. A. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol Biol. 189, 113–130.

    Article  PubMed  CAS  Google Scholar 

  27. Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122–8126.

    Article  PubMed  CAS  Google Scholar 

  28. Fuerst, T. R., Earl, P. L., and Moss, B. (1987) Use of a hybrid vaccinia virus T7 RNA polymerase system for expression of target genes. Mol. Cell. Biol. 7, 2538–2544.

    PubMed  CAS  Google Scholar 

  29. Fuerst, T. R. and Moss, B. (1989) Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5′ untranslated leader. J. Mol. Biol. 206, 333–348.

    Article  PubMed  CAS  Google Scholar 

  30. Lane, J. M., Ruben, F. L., Neff, J. M., and Millar, J. D. (1969) Complications in smallpox vaccination. 1968. National surveillance in the United States. N. Engl. J. Med. 21, 1201–1208.

    Article  Google Scholar 

  31. Shida, H., Hinuma, Y, Hatanaka, M., Morita, M., Kidokoro, M., Suzuki, K, Maruyama, T., Takahashi-Nishimari, F., Sugimotoo, M., Kitamura, A., Miyazama, T., and Hayami, M. (1988) Effects and virulences of recombinant vaccinia viruses derived form attenuated strains that express the human T-cell leukemia virus type I envelope gene. J. Virol. 62, 4474–4480.

    PubMed  CAS  Google Scholar 

  32. Buller, R. M. L., Smith, G. L., Cremer, K., Notkins, A. L., and Moss, B. (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813–815

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez, D., Rodriguez, J. R., Rodriguez J. F., Trauber, D., and Esteban, M. (1989) Highly attenuated vaccinia virus mutants for the generation of safe recombinant viruses. Proc. Natl. Acad. Sci. USA 86,1287–1291.

    Article  PubMed  CAS  Google Scholar 

  34. Dallo, S. and Esteban, M. (1987) Isolation and characterization of attenuated mutants of vaccinia virus. Virology 159, 408–422.

    Article  PubMed  CAS  Google Scholar 

  35. Dallo, S., Rodriguez J. F., and Esteban, M. (1987) A14 K envelope protein of vaccinia virus with an important role in virus-host cell interactions is altered during virus persistence and determines the plaque size phenotype of the virus. Virology 159, 423–432.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 The Humana Press Inc., Clifton, NJ

About this protocol

Cite this protocol

Talavera, A., Rodriguez, J.M. (1991). Isolation and Handling of Recombinant Vaccinia Viruses. In: Collins, M.K.L. (eds) Practical Molecular Virology. Methods in Molecular Biology, vol 8. Humana Press. https://doi.org/10.1385/0-89603-191-8:235

Download citation

  • DOI: https://doi.org/10.1385/0-89603-191-8:235

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-191-3

  • Online ISBN: 978-1-59259-495-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics