Skip to main content

Protein Modification for Crystallization

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1433 Accesses

Abstract

Technological advances in data collection with synchrotron radiation sources and phasing methods including automated model building and validation have highlighted crystallization as the rate-limiting step in X-ray diffraction studies of macromolecular structures. Although protein crystallization remains a stochastic event, protein engineering with the advent of recombinant methods enables us to generate target proteins possessing a higher propensity to form crystals suitable for X-ray diffraction data collection. This chapter presents an overview of protein engineering methods designed to enhance crystallizability and discusses examples of their successful application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kendrew JC, Parrish RG, Marrack JR, Orlans ES (1954) The species specificity of myoglobin. Nature (London) 174:946–949

    Google Scholar 

  2. Campbell JW, Due’e E, Hodgson G, Mercer WD, Stammers DK, Wendell PL, Muirhead H, Watson HC (1972) X-ray diffraction studies on enzymes in the glycolytic pathway. Cold Spring Harb Symp Quant Biol 36:165–170

    Google Scholar 

  3. Terawaki S, Kitano K, Hakoshima T (2008) Crystallographic characterization of the membrane-targeting domain of Rac-specific guanine nucleotide exchange factors Tiam1 and 2. Acta Crystallogr F64:1039–1042

    Google Scholar 

  4. Terawaki S, Kitano K, Mori T, Zhai Y, Higuchi Y, Itoh N, Watanabe T, Kaibuchi K, Hakoshima T (2010) The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-targeting module. EMBO J 29:236–250

    Article  CAS  PubMed  Google Scholar 

  5. Kagiyama M, Hirano Y, Mori T, Kim S-Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes Cells 18:147–160

    Article  CAS  PubMed  Google Scholar 

  6. Hirano Y, Hatano D, Takahashi A, Toriyama M, Inagaki N, Hakoshima T (2011) Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J 30:2734–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei Z, Yan J, Lu Q, Pan L, Zhang M (2011) Cargo recognition mechanism of myosin X revealed by the structure of its tail MyTH4-FERM tandem in complex with the DCC P3 domain. Proc Natl Acad Sci U S A 108:3572–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu L, Pan L, Wei Z, Zhang M (2011) Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 331:757–760

    Article  CAS  PubMed  Google Scholar 

  9. Lee KP, Dey M, Neculai D, Cao C, Dever TE, Sicheri F (2008) Structure of the dual enzyme Ire1 reveals the basis for catalysis and regulation in nonconventional RNA splicing. Cell 132:89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlen M, Forsberg G, Moks T, Hartmanis M, Nilsson B (1992) Fusion proteins in biotechnology. Curr Opin Biotechnol 3:363–369

    Article  CAS  PubMed  Google Scholar 

  11. Malhotra A (2009) Tagging for protein expression. Methods Enzymol 463:239–258

    Article  CAS  PubMed  Google Scholar 

  12. Kuge S, Fujii Y, Shimizu T, Hirose F, Matsukage A, Hakoshima T (1997) Use of a fusion protein to obtain crystals suitable for X-ray analysis: crystallization of a GST-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF. Protein Sci 6:1783–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobe B, Center RJ, Kemp BE, Poumbourios P (1999) Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci 96:4319–4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ke A, Wolberger C (2003) Insights into binding cooperativity of MATa1/MATalpha2 from the crystal structure of a MATa1 homeodomain-maltose binding protein chimera. Protein Sci 12:306–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monné M, Han L, Schwend T, Burendahl S, Jovine L (2008) Crystal structure of the ZP-N domain of ZP3 reveals the core fold of animal egg coats. Nature 456:653–657

    Article  PubMed  Google Scholar 

  17. Ullah H, Scappini EL, Moon AF, Williams LV, Armstrong DL, Pedersen LC (2008) Structure of a signal transduction regulator, RACK1, from Arabidopsis thaliana. Protein Sci 17:1771–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pokutta S, Weis WI (2000) Structure of the dimerization and beta-catenin-binding region of alpha-catenin. Mol Cell 5:533–543

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Hakoshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Hakoshima, T. (2016). Protein Modification for Crystallization. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics