Skip to main content

Overview of Membrane Protein Purification and Crystallization

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1555 Accesses

Abstract

The three-dimensional structures of proteins provide important information for elucidation of the mechanisms and functions of the proteins. However, membrane proteins are difficult to crystallize and available structural information on membrane proteins is very limited. The difficulty is mainly due to the hydrophobic nature and the instability of membrane proteins, which increase some parameters in their purification and crystallization procedures. Recently, some new techniques such as the antibody technique and the lipidic cubic phase crystallization technique were applied to the production of high-quality crystals of membrane proteins. In this chapter, the protocols for the purification of the membrane protein and the lipidic cubic phase crystallization technique are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almen MS, Nordstrom KJ, Fredriksson R, Schioth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50. doi:10.1186/1741-7007-7-50

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fagerberg L, Jonasson K, von Heijne G, Uhlen M, Berglund L (2010) Prediction of the human membrane proteome. Proteomics 10(6):1141–1149. doi:10.1002/pmic.200900258

    Article  CAS  PubMed  Google Scholar 

  3. http://www.rcsb.org/

  4. http://blanco.biomol.uci.edu/mpstruc/

  5. Iwata S (2003) Methods and results in crystallization of membrane proteins. Internat’l University Line, La Jolla

    Google Scholar 

  6. Carola Hunte GJ, Schägger H (2003) Membrane protein purification and crystallization, a practical guide. Academic Press, San Diego

    Google Scholar 

  7. Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276(35):32403–32406. doi:10.1074/Jbc.R100031200

    Article  CAS  PubMed  Google Scholar 

  8. Chae PS, Rasmussen SGF, Rana RR, Gotfryd K, Chandra R, Goren MA, Kruse AC, Nurva S, Loland CJ, Pierre Y, Drew D, Popot JL, Picot D, Fox BG, Guan L, Gether U, Byrne B, Kobilka B, Gellman SH (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7(12):1003–U1090. doi:10.1038/Nmeth.1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasmussen SGF, DeVree BT, Zou YZ, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta(2) adrenergic receptor-Gs protein complex. Nature 477(7366):549–U311. doi:10.1038/Nature10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kruse AC, Hu JX, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556. doi:10.1038/Nature10867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rollauer SE, Tarry MJ, Graham JE, Jaaskelainen M, Jager F, Johnson S, Krehenbrink M, Liu SM, Lukey MJ, Marcoux J, McDowell MA, Rodriguez F, Roversi P, Stansfeld PJ, Robinson CV, Sansom MS, Palmer T, Hogbom M, Berks BC, Lea SM (2012) Structure of the TatC core of the twin-arginine protein transport system. Nature 492(7428):210–214. doi:10.1038/nature11683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hemdan ES, Porath J (1985) Development of immobilized metal affinity-chromatography. 2. Interaction of amino-acids with immobilized nickel iminodiacetate. J Chromatogr 323(2):255–264. doi:10.1016/S0021-9673(01)90388-7

    Article  CAS  Google Scholar 

  13. Hemdan ES, Porath J (1985) Development of immobilized metal affinity-chromatography. 3. Interaction of oligopeptides with immobilized nickel iminodiacetate. J Chromatogr 323(2):265–272. doi:10.1016/S0021-9673(01)90389-9

    Article  CAS  Google Scholar 

  14. Mohanty AK, Simmons CR, Wiener MC (2003) Inhibition of tobacco etch virus protease activity by detergents. Protein Expr Purif 27(1):109–114. doi:Pii S1046-5928(02)00589-2. doi:10.1016/S1046-5928(02)00589-2

  15. Hunte C, Richers S (2008) Lipids and membrane protein structures. Curr Opin Struct Biol 18(4):406–411. doi:10.1016/j.sbi.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  16. Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O’Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322(5902):709–713. doi:10.1126/Science.1164440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimamura T, Yajima S, Suzuki S, Rutherford NG, O’Reilly J, Henderson PJF, Iwata S (2008) Crystallization of the hydantoin transporter Mhp1 from microbacterium liquefaciens. Acta Crystallogr F 64:1172–1174. doi:10.1107/S1744309108036920

    Article  CAS  Google Scholar 

  18. Shimamura T, Weyand S, Beckstein O, Rutherford NG, Hadden JM, Sharples D, Sansom MSP, Iwata S, Henderson PJF, Cameron AD (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328(5977):470–473. doi:10.1126/Science.1186303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta(1)-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gast P, Hemelrijk P, Hoff AJ (1994) Determination of the number of detergent molecules associated with the reaction-center protein isolated from the photosynthetic bacterium rhodopseudomonas-viridis – effects of the amphiphilic molecule 1,2,3-heptanetriol. FEBS Lett 337(1):39–42. doi:10.1016/0014-5793(94)80625-X

    Article  CAS  PubMed  Google Scholar 

  21. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grutter MG (2007) Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol 5(1):106–113. doi:10.1371/journal.pbio.0050007, ARTN e7

    CAS  Google Scholar 

  22. Lu M, Symersky J, Radchenko M, Koide A, Guo Y, Nie RX, Koide S (2013) Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 110(6):2099–2104. doi:10.1073/Pnas.1219901110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8-Angstrom resolution of cytochrome-C-oxidase from paracoccus-denitrificans. Nature 376(6542):660–669. doi:10.1038/376660a0

    Article  CAS  PubMed  Google Scholar 

  24. Ostermeier C, Iwata S, Ludwig B, Michel H (1995) F-V fragment mediated crystallization of the membrane-protein bacterial cytochrome-C-oxidase. Nat Struct Biol 2(10):842–846. doi:10.1038/Nsb1095-842

    Article  CAS  PubMed  Google Scholar 

  25. Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 angstrom resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody F-V fragment. Proc Natl Acad Sci U S A 94(20):10547–10553. doi:10.1073/Pnas.94.20.10547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure at 2.3 angstrom resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Struct Fold Des 8(6):669–684. doi:10.1016/S0969-2126(00)00152-0

    Article  CAS  Google Scholar 

  27. Zhou YF, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 angstrom resolution. Nature 414(6859):43–48. doi:10.1038/35102009

    Article  CAS  PubMed  Google Scholar 

  28. Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, Nakada-Nakura Y, Kusano-Arai O, Weyand S, Shimamura T, Nomura N, Cameron AD, Kobayashi T, Hamakubo T, Iwata S, Murata T (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482(7384):237–U130. doi:10.1038/Nature10750

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. doi:10.1038/nature09648, nature09648 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruse AC, Ring AM, Manglik A, Hu J, Hu K, Eitel K, Hubner H, Pardon E, Valant C, Sexton PM, Christopoulos A, Felder CC, Gmeiner P, Steyaert J, Weis WI, Garcia KC, Wess J, Kobilka BK (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504(7478):101–106. doi:10.1038/nature12735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93(25):14532–14535. doi:10.1073/Pnas.93.25.14532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu W, Hanson MA, Stevens RC, Cherezov V (2010) LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys J 98(8):1539–1548. doi:10.1016/j.bpj.2009.12.4296, S0006-3495(09)06148-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51. doi:10.1146/Annurev.Biophys.050708.133655

    Article  CAS  PubMed  Google Scholar 

  34. Cherezov V (2011) Lipidic cubic phase technologies for membrane protein structural studies. Curr Opin Struct Biol 21(4):559–566. doi:10.1016/J.Sbi.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wadsten P, Wohri AB, Snijder A, Katona G, Gardiner AT, Cogdell RJ, Neutze R, Engstrom S (2006) Lipidic sponge phase crystallization of membrane proteins. J Mol Biol 364(1):44–53. doi:10.1016/J.Jmb.2006.06.043

    Article  CAS  PubMed  Google Scholar 

  36. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357(5):1605–1618. doi:S0022-2836(06)00078-7 [pii] 10.1016/j.jmb.2006.01.049

    Google Scholar 

  37. Shiroishi M, Kobayashi T, Ogasawara S, Tsujimoto H, Ikeda-Suno C, Iwata S, Shimamura T (2011) Production of the stable human histamine H(1) receptor in Pichia pastoris for structural determination. Methods 55(4):281–286. doi:10.1016/j.ymeth.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  38. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70. doi:10.1038/nature10236. nature10236 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newby ZER, O’Connell JD, Gruswitz F, Hays FA, Harries WEC, Harwood IM, Ho JD, Lee JK, Savage DF, Miercke LJW, Stroud RM (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4(5):619–637. doi:10.1038/Nprot.2009.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4(5):706–731. doi:10.1038/Nprot.2009.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cherezov V http://cherezov.usc.edu

  42. Caffrey M, Porter C (2010) Crystallizing membrane proteins for structure determination using lipidic mesophases. J Visualized Exp: JoVE (45) e1712. doi:10.3791/1712

  43. Liu W, Cherezov V (2011) Crystallization of membrane proteins in lipidic mesophases. J Visualized Exp: JoVE (49) e2501. doi:10.3791/2501

  44. QIAGEN (2003) A handbook for high-level expression and purification of 6xHis-tagged proteins. QIAGEN, Hilden

    Google Scholar 

  45. TALON Metal Affinity Resins User Manual

    Google Scholar 

  46. Affymetrix Anatrace Products catalog

    Google Scholar 

  47. Kors CA, Wallace E, Davies DR, Li L, Laible PD, Nollert P (2009) Effects of impurities on membrane-protein crystallization in different systems. Acta Crystallogr D 65:1062–1073. doi:10.1107/S0907444909029163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lide DR (2008) CRC handbook of chemistry and physics, 89th edn. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work was supported partly by JSPS KAKENHI Grant Numbers 26102725 and 15H04338.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Shimamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Shimamura, T. (2016). Overview of Membrane Protein Purification and Crystallization. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics