Skip to main content

NMR Structural Biology Using Paramagnetic Lanthanide Probe

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

We describe the recent development in nuclear magnetic resonance (NMR) equipped with paramagnetic lanthanide probe. Paramagnetic lanthanide probe provides long-range (~40 Å) distance and angular information that can be exploited in structure determination of large proteins and their complexes, dynamics, ligand screening, and structure-based resonance assignment. Application of the paramagnetic lanthanide probe is not limited to metal-binding proteins but becoming general by the use of lanthanide-binding tags. We here illustrate the practical aspects of the experiments and analyses for the use of paramagnetic lanthanide probe. Applications to protein-protein and protein-ligand structure determination and ligand screening are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanelis V, Forman Kay JD, Kay LE (2001) Multidimensional NMR methods for protein structure determination. IUBMB Life 52:291–302. doi:10.1080/152165401317291147

    Article  CAS  PubMed  Google Scholar 

  2. Pellecchia M, Sem DS, Wüthrich K (2002) NMR in drug discovery. Nat Rev Drug Discov 1:211–219. doi:10.1038/nrd748

    Article  CAS  PubMed  Google Scholar 

  3. Gelis I, Bonvin AMJJ, Keramisanou D et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi:10.1016/j.cell.2007.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saio T, Guan X, Rossi P et al (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494–1250494. doi:10.1126/science.1250494

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512

    Article  CAS  PubMed  Google Scholar 

  6. Hiller S, Garces RG, Malia TJ et al (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210. doi:10.1126/science.1161302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bokoch MP, Zou Y, Rasmussen SGF et al (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112. doi:10.1038/nature08650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nygaard R, Zou Y, Dror RO et al (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542. doi:10.1016/j.cell.2013.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kofuku Y, Ueda T, Okude J et al (2012) Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 3:1045. doi:10.1038/ncomms2046

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kofuku Y, Ueda T, Okude J et al (2014) Functional dynamics of deuterated β2‐adrenergic receptor in lipid bilayers revealed by NMR spectroscopy. Angew Chem Int Ed 53:13376–13379. doi:10.1002/anie.201406603

    Article  CAS  Google Scholar 

  11. Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754. doi:10.1038/nprot.2006.101

    Article  CAS  PubMed  Google Scholar 

  12. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pintacuda G, Park AY, Keniry MA et al (2006) Lanthanide labeling offers fast NMR approach to 3D structure determinations of protein − protein complexes. J Am Chem Soc 128:3696–3702. doi:10.1021/ja057008z

    Article  CAS  PubMed  Google Scholar 

  14. Saio T, Yokochi M, Kumeta H, Inagaki F (2010) PCS-based structure determination of protein–protein complexes. J Biomol NMR 46:271–280. doi:10.1007/s10858-010-9401-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keizers PHJ, Mersinli B, Reinle W et al (2010) A solution model of the complex formed by adrenodoxin and adrenodoxin reductase determined by paramagnetic NMR spectroscopy. Biochemistry 49:6846–6855. doi:10.1021/bi100598f

    Article  CAS  PubMed  Google Scholar 

  16. Detlef B, Ivano B, Cremonini MA et al (1997) Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3+ ions by 1H NMR†,‡. Biochemistry 6(39):11605–11618. doi:10.1021/bi971022

    Google Scholar 

  17. Allegrozzi M, Bertini I, Janik MBL et al (2000) Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 Å from the metal ion. J Am Chem Soc 122:4154–4161. doi:10.1021/ja993691b

    Article  CAS  Google Scholar 

  18. Bertini I, Janik MBL, Liu G et al (2001) Solution structure calculations through self-orientation in a magnetic field of a cerium(III) substituted calcium-binding protein. J Magn Reson 148:23–30. doi:10.1006/jmre.2000.2218

    Article  CAS  PubMed  Google Scholar 

  19. Bertini I, Donaire A, Jiménez B et al (2001) Paramagnetism-based versus classical constraints: an analysis of the solution structure of Ca Ln calbindin D9k. J Biomol NMR 21:85–98. doi:10.1023/A:1012422402545

    Article  CAS  PubMed  Google Scholar 

  20. Saio T, Ogura K, Yokochi M et al (2009) Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect. J Biomol NMR 44:157–166. doi:10.1007/s10858-009-9325-z

    Article  CAS  PubMed  Google Scholar 

  21. Yagi H, Pilla KB, Maleckis A et al (2013) Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21:883–890. doi:10.1016/j.str.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Pilla KB, Li Q et al (2013) Magic angle spinning NMR structure determination of proteins from pseudocontact shifts. J Am Chem Soc 135:8294–8303. doi:10.1021/ja4021149

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz C, Vernon R, Otting G et al (2012) Protein structure determination from pseudocontact shifts using ROSETTA. J Mol Biol 416:668–677. doi:10.1016/j.jmb.2011.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhaumik A, Luchinat C, Parigi G et al (2013) NMR crystallography on paramagnetic systems: solved and open issues. Cryst Eng Commun 15:8639–8656. doi:10.1039/C3CE41485J

    Article  CAS  Google Scholar 

  25. Saio T, Ogura K, Shimizu K et al (2011) An NMR strategy for fragment-based ligand screening utilizing a paramagnetic lanthanide probe. J Biomol NMR 51:395–408. doi:10.1007/s10858-011-9566-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan J-Y, Keizers PHJ, Liu W-M et al (2013) Small-molecule binding sites on proteins established by paramagnetic NMR spectroscopy. J Am Chem Soc 135:5859–5868. doi:10.1021/ja401323m

    Article  CAS  PubMed  Google Scholar 

  27. John M, Pintacuda G, Park AY et al (2006) Structure determination of protein − ligand complexes by transferred paramagnetic shifts. J Am Chem Soc 128:12910–12916. doi:10.1021/ja063584z

    Article  CAS  PubMed  Google Scholar 

  28. Bertini I, Del Bianco C, Gelis I et al (2004) From the cover: experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci U S A 101:6841–6846. doi:10.1073/pnas.0308641101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bertini I, Gupta YK, Luchinat C et al (2007) Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J Am Chem Soc 129:12786–12794. doi:10.1021/ja0726613

    Article  CAS  PubMed  Google Scholar 

  30. la Cruz de L, Nguyen THD, Ozawa K et al (2011) Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 133:19205–19215. doi:10.1021/ja208435s

    Article  Google Scholar 

  31. John M, Schmitz C, Park AY et al (2007) Sequence-specific and stereospecific assignment of methyl groups using paramagnetic lanthanides. J Am Chem Soc 129:13749–13757. doi:10.1021/ja0744753

    Article  CAS  PubMed  Google Scholar 

  32. Skinner SP, Moshev M, Hass MAS, Ubbink M (2013) PARAssign—paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts. J Biomol NMR 55:379–389. doi:10.1007/s10858-013-9722-1

    Article  CAS  PubMed  Google Scholar 

  33. Otting G (2010) Protein NMR using paramagnetic ions. 39:387–405. doi:10.1146/annurev.biophys.093008.131321. http://dx.doi.org/10.1146/annurevbiophys093008131321

    Google Scholar 

  34. Pintacuda G, Keniry MA, Huber T (2004) Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 126:2963–2970. doi:10.1021/ja039339m

    Article  CAS  PubMed  Google Scholar 

  35. Bertini I, Janik MBL, Lee Y-M et al (2001) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188. doi:10.1021/ja0028626

    Article  CAS  PubMed  Google Scholar 

  36. Pintacuda G, John M, Su X-C, Otting G (2007) NMR structure determination of protein − ligand complexes by lanthanide labeling. Acc Chem Res 40:206–212. doi:10.1021/ar050087z

    Article  CAS  PubMed  Google Scholar 

  37. Wöhnert J, Franz KJ, Nitz M et al (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339. doi:10.1021/ja036022d

    Article  PubMed  Google Scholar 

  38. Martin LJ, Hähnke MJ, Nitz M et al (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113. doi:10.1021/ja070480v

    Article  CAS  PubMed  Google Scholar 

  39. Ma C, Opella SJ (2000) Lanthanide ions bind specifically to an added “EF-Hand” and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson 146:381–384. doi:10.1006/jmre.2000.2172

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang T, Lee HS, Imperiali B, Prestegard JH (2008) Structure determination of a Galectin‐3–carbohydrate complex using paramagnetism‐based NMR constraints. Protein Sci 17:1220–1231. doi:10.1110/ps.034561.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Su X-C, Huber T, Dixon NE, Otting G (2006) Site‐specific labelling of proteins with a rigid lanthanide‐binding tag. Chembiochem 7:1599–1604. doi:10.1002/cbic.200600142

    Article  CAS  PubMed  Google Scholar 

  42. Xun-Cheng S, McAndrew K, Thomas Huber A, Otting G (2008) Lanthanide-binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from Multiple angles. J Am Chem Soc 130:1681–1687. doi:10.1021/ja076564l

    Article  Google Scholar 

  43. Kobashigawa Y, Saio T, Ushio M et al (2012) Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination. J Biomol NMR 53:53–63. doi:10.1007/s10858-012-9623-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su X-C, Man B, Beeren S et al (2008) A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc 130:10486–10487. doi:10.1021/ja803741f

    Article  CAS  PubMed  Google Scholar 

  45. Dvoretsky A, Gaponenko V, Rosevear PR (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett 528:189–192. doi:10.1016/S0014-5793(02)03297-0

    Article  CAS  PubMed  Google Scholar 

  46. Haberz P, Rodriguez-Castañeda F, Junker J et al (2006) Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett 8:1275–1278. doi:10.1021/ol053049o

    Article  CAS  PubMed  Google Scholar 

  47. Pintacuda G, Moshref A, Leonchiks A et al (2004) Site-specific labelling with a metal chelator for protein-structure refinement. J Biomol NMR 29:351–361. doi:10.1023/B:JNMR.0000032610.17058.fe

    Article  CAS  PubMed  Google Scholar 

  48. Prudêncio M, Rohovec J, Peters JA et al (2004) A caged lanthanide complex as a paramagnetic shift agent for protein NMR. Chem Eur J 10:3252–3260. doi:10.1002/chem.200306019

    Article  PubMed  Google Scholar 

  49. Ikegami T, Verdier L, Sakhaii P et al (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR 29:339–349. doi:10.1023/B:JNMR.0000032611.72827.de

    Article  CAS  PubMed  Google Scholar 

  50. Leonov A, Voigt B, Rodriguez Castañeda F et al (2005) Convenient synthesis of multifunctional EDTA‐based chiral metal chelates substituted with an S‐mesylcysteine. Chem Eur J 11:3342–3348. doi:10.1002/chem.200400907

    Article  CAS  PubMed  Google Scholar 

  51. Gaponenko V, Altieri AS, Li J, Byrd RA (2002) Breaking symmetry in the structure determination of (large) symmetric protein dimers – Springer. J Biomol NMR 24:143–148. doi:10.1023/A:1020948529076

    Article  CAS  PubMed  Google Scholar 

  52. Gaponenko V, Sarma SP, Altieri AS et al (2004) Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints. J Biomol NMR 28:205–212. doi:10.1023/B:JNMR.0000013706.09264.36

    Article  CAS  PubMed  Google Scholar 

  53. Vlasie MD, Comuzzi C, van den Nieuwendijk AMCH et al (2007) Long‐range‐distance NMR effects in a protein labeled with a lanthanide–DOTA chelate. Chem Eur J 13:1715–1723. doi:10.1002/chem.200600916

    Article  CAS  PubMed  Google Scholar 

  54. Keizers PHJ, Desreux JF, Overhand M, Ubbink M (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc 129:9292–9293. doi:10.1021/ja0725201

    Article  CAS  PubMed  Google Scholar 

  55. Keizers PHJ, Saragliadis A, Hiruma Y et al (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc 130:14802–14812. doi:10.1021/ja8054832

    Article  CAS  PubMed  Google Scholar 

  56. Loh CT, Ozawa K, Tuck KL et al (2013) Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins. Bioconjug Chem 24:260–268. doi:10.1021/bc300631z

    Article  CAS  PubMed  Google Scholar 

  57. Nitz M, Franz KJ, Maglathlin RL, Imperiali B (2003) A powerful combinatorial screen to identify high‐affinity terbium(III)‐binding peptides. Chembiochem 4:272–276. doi:10.1002/cbic.200390047

    Article  CAS  PubMed  Google Scholar 

  58. Nitz M, Sherawat M, Franz KJ et al (2004) Structural origin of the high affinity of a chemically evolved lanthanide‐binding peptide. Angew Chem Int Ed 43:3682–3685. doi:10.1002/anie.200460028

    Article  CAS  Google Scholar 

  59. Schmitz C, Stanton-Cook MJ, Su X-C et al (2008) Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189. doi:10.1007/s10858-008-9249-z

    Article  CAS  PubMed  Google Scholar 

  60. Schmitz C, John M, Park AY et al (2006) Efficient χ-tensor determination and NH assignment of paramagnetic proteins. J Biomol NMR 35:79–87. doi:10.1007/s10858-006-9002-4

    Article  CAS  PubMed  Google Scholar 

  61. Banci L, Bertini I, Bren KL et al (1996) The use of pseudocontact shifts to refine solution structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example. JBIC 1:117–126. doi:10.1007/s007750050030

    Article  CAS  Google Scholar 

  62. Banci L, Bertini I, Savellini GG et al (1997) Pseudocontact shifts as constraints for energy minimization and molecular dynamics calculations on solution structures of paramagnetic metalloproteins. Proteins Struct Funct Bioinforma 29:68–76. doi:10.1002/(SICI)1097-0134(199709)29:1<68::AID-PROT5>3.0.CO;2-B

    Article  CAS  Google Scholar 

  63. Kleywegt GJ, Jones TA (1998) Databases in protein crystallography. Acta Crystallogr D Biol Crystallogr 54:1119–1131. doi:10.1107/S0907444998007100

    Article  CAS  PubMed  Google Scholar 

  64. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. doi:10.1107/S0907444904011679

    Article  PubMed  Google Scholar 

  65. Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle and visualize molecular structure on windows-based PCs. J Mol Graph Model 21:47–49. doi:10.1016/S1093-3263(02)00123-7

    Article  CAS  PubMed  Google Scholar 

  66. Anton V, Bryksin IM (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48:463–465. doi:10.2144/000113418

    Article  Google Scholar 

  67. Banci L, Bertini I, Cavallaro G et al (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28:249–261. doi:10.1023/B:JNMR.0000013703.30623.f7

    Article  CAS  PubMed  Google Scholar 

  68. Banci L, Bertini I, Huber JG et al (1998) Partial orientation of oxidized and reduced cytochrome b5at high magnetic fields: magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination. J Am Chem Soc 120:12903–12909. doi:10.1021/ja981791w

    Article  CAS  Google Scholar 

  69. Güntert P (2004) Automated NMR structure calculation with CYANA. In: Protein NMR techniques. Humana Press, Totowa, pp 353–378

    Google Scholar 

  70. Schmitz C, Bonvin AMJJ (2011) Protein–protein HADDocking using exclusively pseudocontact shifts. J Biomol NMR 50:263–266. doi:10.1007/s10858-011-9514-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schwieters CD, Kuszewski JJ, Tjandra N, Marius Clore G (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73. doi:10.1016/S1090-7807(02)00014-9

    Article  CAS  PubMed  Google Scholar 

  72. Bertini I, Kursula P, Luchinat C et al (2009) Accurate solution structures of proteins from X-ray data and a minimal set of NMR data: calmodulin − peptide complexes as examples. J Am Chem Soc 131:5134–5144. doi:10.1021/ja8080764

    Article  CAS  PubMed  Google Scholar 

  73. Amero CD, Boomershine WP, Xu Y, Foster M (2008) Solution structure of pyrococcus furiosusRPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner †. Biochemistry 47:11704–11710. doi:10.1021/bi8015982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu X, Keizers PHJ, Reinle W et al (2009) Intermolecular dynamics studied by paramagnetic tagging. J Biomol NMR 43:247–254. doi:10.1007/s10858-009-9308-0

    Article  CAS  PubMed  Google Scholar 

  75. Wolfgang J, Perez LB, Paris CG et al (2000) Second-site NMR screening with a spin-labeled first ligand. J Am Chem 122:7394–7395. doi:10.1021/ja001241

    Article  Google Scholar 

  76. Jahnke W, Simon Rüdisser A, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc 123:3149–3150. doi:10.1021/ja005836g

    Article  CAS  PubMed  Google Scholar 

  77. Ogura K, Kobashigawa Y, Saio T et al (2013) Practical applications of hydrostatic pressure to refold proteins from inclusion bodies for NMR structural studies. Protein Eng Des Sel 26:409–416. doi:10.1093/protein/gzt012

    Article  CAS  PubMed  Google Scholar 

  78. Marius G, Clore A, Schwieters CD (2003) Docking of protein − protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1HN/15N chemical shift mapping and backbone 15N − 1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J Am Chem Soc 125:2902–2912. doi:10.1021/ja028893d

    Article  Google Scholar 

  79. Nioche P, Liu W-Q, Broutin I et al (2002) Crystal structures of the SH2 domain of grb2: highlight on the binding of a new high-affinity inhibitor. J Mol Biol 315:1167–1177. doi:10.1006/jmbi.2001.5299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yoshihiro Kobashigawa for providing the data for Fig. 5. A part of this work was supported by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuhiko Inagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Saio, T., Inagaki, F. (2016). NMR Structural Biology Using Paramagnetic Lanthanide Probe. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics