Skip to main content

Structural Biology and Electron Microscopy

  • Protocol
  • First Online:
  • 1531 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Like X-ray crystallography and NMR, electron microscopy (EM) is now widely applied to determine the structure of proteins and their macromolecular complexes. Single-particle analysis (SPA), which reconstructs the three-dimensional (3D) structure of a protein from its EM images using image processing, has an advantage when the target molecule is difficult to crystallize or only a small amount of protein can be obtained. The technique is based on the theory that two-dimensional EM images of a protein contain sufficient information to reconstruct the original 3D structure. SPA was developed when this theory was applied to ribosomes and the coat protein of icosahedral or helical symmetrical viruses. Because SPA does not require protein crystallization, it is widely applicable to the analysis of solubilized membrane proteins or supermolecular complexes. It allows conformational changes undergone by proteins to be documented. Many other EM-based structural analysis techniques are available in addition to SPA. Electron tomography reconstructs the 3D structure of a protein complex or a cell from a series of images recorded by tilting the specimen in the EM column. Electron crystallography can yield the high-resolution structure of proteins crystallized in two dimensions in a lipid bilayer. Atmospheric scanning electron microscopy directly observes cells in aqueous solution and has realized high-throughput immuno-EM of cells without hydrophobic treatment. It can also visualize protein microcrystals in the crystallization buffer.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    Article  PubMed  Google Scholar 

  2. Frank J, Zhu J, Penczek P et al (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–444

    Article  CAS  PubMed  Google Scholar 

  3. Stark H, Mueller F, Orlova EV et al (1995) The 70S Escherichia coli ribosome at 23 Å resolution: fitting the ribosomal RNA. Structure 3:815–821

    Article  CAS  PubMed  Google Scholar 

  4. Bottcher B, Wynne SA, Crowther RA (1997) Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy. Nature 386:88–91

    Article  CAS  PubMed  Google Scholar 

  5. van Heel M, Gowen B, Matadeen R et al (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369

    Article  PubMed  Google Scholar 

  6. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, New York

    Book  Google Scholar 

  7. Bartesaghi A, Merk A, Banerjee S et al (2013) Electron microscopy. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151

    Article  Google Scholar 

  8. Jiang J, Pentelute BL, Collier RJ, Zhou ZH (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521:545–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14:673–681

    Article  CAS  PubMed  Google Scholar 

  11. Bremer A, Henn C, Engel A, Baumeister W, Aebi U (1992) Has negative staining still a place in biomacromolecular electron microscopy? Ultramicroscopy 461:85–111

    Article  Google Scholar 

  12. Nishiyama H, Suga M, Ogura T et al (2010) Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169:438–449

    Article  CAS  PubMed  Google Scholar 

  13. Mio K, Ogura T, Kiyonaka S et al (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383

    Article  CAS  PubMed  Google Scholar 

  14. Sato C, Sato M, Iwasaki A, Doi T, Engel A (1998) The sodium channel has four domains surrounding a central pore. J Struct Biol 121:314–325

    Article  CAS  PubMed  Google Scholar 

  15. Sato C, Ueno Y, Asai K et al (2001) The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 409:1047–1051

    Article  CAS  PubMed  Google Scholar 

  16. Yuuki H, Hasunuma Y, Komazawa K et al (1996) A sensitive enzyme immunoassay specific for salmon calcitonin. Biomed Res 17:257–259

    Article  CAS  Google Scholar 

  17. Ishikawa E, Yoshitake S, Imagawa M, Sumiyoshi A (1983) Preparation of monomeric Fab’-horseradish peroxidase conjugate using thiol groups in the hinge and its evaluation in enzyme immunoassay and immunohistochemical staining. Ann N Y Acad Sci 420:74–89

    Article  CAS  PubMed  Google Scholar 

  18. Brenner S, Horne RW (1959) A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta 34:103–110

    Article  CAS  PubMed  Google Scholar 

  19. Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456

    Article  CAS  PubMed  Google Scholar 

  20. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  21. Fujiyoshi Y, Mizusaki T, Morikawa K et al (1991) Development of a superfluid-helium stage for high-resolution electron-microscopy. Ultramicroscopy 38:241–251

    Article  Google Scholar 

  22. Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37:3–13

    Article  CAS  PubMed  Google Scholar 

  23. Jin L, Milazzo AC, Kleinfelder S et al (2008) Applications of direct detection device in transmission electron microscopy. J Struct Biol 161:352–358

    Article  PubMed  Google Scholar 

  24. Milazzo AC, Moldovan G, Lanman J et al (2010) Characterization of a direct detection device imaging camera for transmission electron microscopy. Ultramicroscopy 110:744–747

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li X, Mooney P, Zheng S et al (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grigorieff N (2013) Direct detection pays off for electron cryo-microscopy. Elife 2:e00573

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  28. van Heel M, Portugal R, Rohou A et al (2011) Four-dimensional cryo electron microscopy at quasi atomic resolution: IMAGIC 4D. In: Arnold E, Himmel DM, Rossmann MG (eds) Crystallography of biological macromolecules. Wiley, New York, pp 624–628

    Google Scholar 

  29. Frank J, Radermacher M, Penczek P et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  30. Shaikh TR, Gao H, Baxter WT et al (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat Protoc 3:1941–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  CAS  PubMed  Google Scholar 

  32. Tang G, Peng L, Baldwin PR et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  33. Scheres SH, Nunez-Ramirez R, Sorzano CO, Carazo JM, Marabini R (2008) Image processing for electron microscopy single-particle analysis using XMIPP. Nat Protoc 3:977–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sorzano CO, Marabini R, Velazquez-Muriel J et al (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    Article  CAS  PubMed  Google Scholar 

  35. Marabini R, Masegosa IM, San Martin MC et al (1996) Xmipp: an image processing package for electron microscopy. J Struct Biol 116:237–240

    Article  PubMed  Google Scholar 

  36. Yasunaga T, Wakabayashi T (1996) Extensible and object-oriented system Eos supplies a new environment for image analysis of electron micrographs of macromolecules. J Struct Biol 116:155–160

    Article  CAS  PubMed  Google Scholar 

  37. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    Article  CAS  PubMed  Google Scholar 

  38. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogura T, Sato C (2004) Automatic particle pickup method using a neural network has high accuracy by applying an initial weight derived from eigenimages: a new reference free method for single-particle analysis. J Struct Biol 145:63–75

    Article  CAS  PubMed  Google Scholar 

  40. Kawata M, Sato C (2013) Multi-reference-based multiple alignment statistics enables accurate protein-particle pickup from noisy images. Microscopy 62:303–315

    Article  CAS  PubMed  Google Scholar 

  41. Ogura T, Iwasaki K, Sato C (2003) Topology representing network enables highly accurate classification of protein images taken by cryo electron-microscope without masking. J Struct Biol 143:185–200

    Article  CAS  PubMed  Google Scholar 

  42. Crowther RA (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos Trans R Soc Lond B Biol Sci 261:221–230

    Article  CAS  PubMed  Google Scholar 

  43. van Heel M (1987) Angular reconstitution – a posteriori assignment of projection directions for 3-D reconstruction. Ultramicroscopy 21:111–123

    Article  PubMed  Google Scholar 

  44. Frank J, Goldfarb W, Eisenberg D, Baker TS (1978) Reconstruction of glutamine synthetase using computer averaging. Ultramicroscopy 3:283–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Radermacher M, Wagenknecht T, Verschoor A, Frank J (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J Microsc 141:RP1–RP2

    Article  CAS  PubMed  Google Scholar 

  46. Ogura T, Sato C (2006) A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections. J Struct Biol 156:371–386

    Article  CAS  PubMed  Google Scholar 

  47. Maruyama Y, Ogura T, Mio K et al (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282:36961–36970

    Article  CAS  PubMed  Google Scholar 

  48. Mio K, Kubo Y, Ogura T et al (2008) The motor protein prestin is a bullet-shaped molecule with inner cavities. J Biol Chem 283:1137–1145

    Article  CAS  PubMed  Google Scholar 

  49. Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745

    Article  CAS  PubMed  Google Scholar 

  50. Trabuco LG, Villa E, Mitra K, Frank J, Schulten K (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brandt F, Carlson LA, Hartl FU, Baumeister W, Grunewald K (2010) The three-dimensional organization of polyribosomes in intact human cells. Mol Cell 39:560–569

    Article  CAS  PubMed  Google Scholar 

  52. Tani K, Mitsuma T, Hiroaki Y et al (2009) Mechanism of aquaporin-4′s fast and highly selective water conduction and proton exclusion. J Mol Biol 389:694–706

    Article  CAS  PubMed  Google Scholar 

  53. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  CAS  PubMed  Google Scholar 

  54. Gonen T, Cheng Y, Sliz P et al (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438:633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jap BK, Zulauf M, Scheybani T et al (1992) 2D crystallization: from art to science. Ultramicroscopy 46:45–84

    Article  CAS  PubMed  Google Scholar 

  56. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    Article  CAS  PubMed  Google Scholar 

  57. Kimura Y, Vassylyev DG, Miyazawa A et al (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389:206–211

    Article  CAS  PubMed  Google Scholar 

  58. Subramaniam S, Henderson R (2000) Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406:653–657

    Article  CAS  PubMed  Google Scholar 

  59. Maruyama Y, Ebihara T, Nishiyama H, Suga M, Sato C (2012) Immuno EM-OM correlative microscopy in solution by atmospheric scanning electron microscopy (ASEM). J Struct Biol 180:259–270

    Article  CAS  PubMed  Google Scholar 

  60. Maruyama Y, Ebihara T, Nishiyama H et al (2012) Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy. Int J Mol Sci 13:10553–10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirano K, Kinoshita T, Uemura T et al (2014) Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy 143:52–66

    Article  CAS  PubMed  Google Scholar 

  62. Memtily N, Okada T, Ebihara T et al (2015) Observation of tissues in open aqueous solution by atmospheric scanning electron microscopy: applicability to intraoperative cancer diagnosis. Int J Oncol 46:1872–1882

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, Structural basis of cell-signaling complexes mediating signal perception, transduction, and responses, and by grants from CREST; from the Ministry of Education, Culture, Sports, Science, and Technology; from Canon; and from AIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikara Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Mio, K., Sato, M., Sato, C. (2016). Structural Biology and Electron Microscopy. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics