Skip to main content

Mass Spectrometry

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1717 Accesses

Abstract

The first mass spectrometry device was made in 1912 by J. J. Thomson. Until the early 1900s, the analysis of small molecules was mainly performed using electronic ionization (EI) and chemical ionization (CI) methods. However, in 1969 Beckey and others developed the electric field desorption (FD) method to analyze the molecular weight distribution of high molecular weight compounds. In subsequent years, electrospray ionization (ESI) and the matrix-assisted laser desorption/ionization (MALDI) methods have been widely used for the analysis of high molecular weight compounds such as proteins and sugars. Significant progress has been made in genomic analysis. For the proteome to be analyzed (e.g., all proteins can be included in an individual sample), mass spectrometry is needed. Recently, mass spectrometry has played an important role in the analysis of protein complexes, particularly in determining the stoichiometry of protein within complexes as well as proteomic analysis. Importantly, the mass measurement of molecular complexes composed of proteins or of proteins and low molecular weight compounds through non-covalent interactions has been enabled, accelerating the understanding of biological phenomena and drug development. In this chapter, we describe the use of mass spectrometry for the analysis of non-covalent protein–protein interactions and protein–low molecular weight compound complexes. We also discuss the validation of the molecular masses of proteins within protein complexes by using mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  2. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A 90:5011–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Uchiyama S, Kobayashi S, Takata H, Ishihara T, Hori N, Higashi T, Hayashihara K, Sone T, Higo D, Nirasawa T, Takao T, Matsunaga S, Fukui K (2005) Proteome analysis of human metaphase chromosomes. J Biol Chem 280:16994–17004

    Article  CAS  PubMed  Google Scholar 

  4. Kosinska Eriksson U, Fischer G, Friemann R, Enkavi G, Tajkhorshid E, Neutze R (2013) Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340:1346–1349

    Article  CAS  PubMed  Google Scholar 

  5. Enokizono Y, Kumeta H, Funami K, Kumeta H, Funami K, Horiuchi M, Sarmiento J, Yamashita K, Standley DM, Matsumoto M, Seya T, Inagaki F (2013) Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. Proc Natl Acad Sci U S A 110:19908–19913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nogi T, Yasui N, Mihara E, Matsunaga Y, Noda M, Yamashita N, Toyofuku T, Uchiyama S, Goshima Y, Kumanogoh A, Takagi J (2010) Structural basis for semaphorin signalling through the plexin receptor. Nature 467:1123–1127

    Article  CAS  PubMed  Google Scholar 

  7. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yohida T (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  9. Aquilina JA, Benesch JLP, Ding LL, Yaron O, Horwitz J, Robinson CV (2005) Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation. J Biol Chem 280:14485–14491

    Article  CAS  PubMed  Google Scholar 

  10. Chakravarthy S, Park YJ, Chodaparambil J, Edayathumangalam RS, Luger K (2005) Structure and dynamic properties of nucleosome core particles. FEBS Lett 579:895–898

    Article  CAS  PubMed  Google Scholar 

  11. Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86:887–896

    Article  CAS  PubMed  Google Scholar 

  12. Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mosammaparast N, Ewart CS, Pemberton LF (2002) A role for nucleosome assembly protein 1 in the nuclear transport of histones H2A and H2B. EMBO J 21:6527–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McBryant SJ, Peersen OB (2004) Self-association of the yeast nucleosome assembly protein 1. Biochemistry 43:10592–10599

    Article  CAS  PubMed  Google Scholar 

  15. Fejes Toth K, Mazurkiewicz J, Rippe K (2005) Association states of nucleosome assembly protein 1 and its complexes with histones. J Biol Chem 280:15690–15699

    Article  Google Scholar 

  16. Noda M, Uchiyama S, McKay AR, Morimoto A, Misawa S, Yoshida A, Shimahara H, Takinowaki H, Nakamura S, Kobayashi Y, Matsunaga S, Ohkubo T, Robinson CV, Fukui K (2011) Assembly states of the nucleosome assembly protein 1 (NAP-1) revealed by sedimentation velocity and non-denaturing mass spectrometry. Biochem J 436:101–112

    Article  CAS  PubMed  Google Scholar 

  17. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Uchiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Noda, M., Fukui, K., Uchiyama, S. (2016). Mass Spectrometry. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_11

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics