Skip to main content

Analytical Ultracentrifugation

  • Protocol
  • First Online:
Book cover Advanced Methods in Structural Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Analytical ultracentrifugation (AUC) is a very useful technique to characterize macromolecular interactions. In AUC, a centrifugal force of up to about 250,000 g is applied to a solution of macromolecules, and the progression of sedimentation over time is monitored using an optical detection system. Significant advances in both hardware and software over the past few decades have greatly improved the applicability of AUC for the study of protein–protein interactions. The purpose of this chapter is to provide experimental strategies for the analysis of protein–protein interactions using AUC, including the determination of the association constant of self-associations, binding stoichiometry, and equilibrium binding constant of heterogeneous protein–protein associations. An overview of the method and software packages available for AUC data analysis and optimal protocols for the characterization of protein–protein interactions will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kato K, Sautes-Fridman C, Yamada W et al (2000) Structural basis of the interaction between IgG and Fcgamma-receptors. J Mol Biol 295:213–224

    Article  CAS  PubMed  Google Scholar 

  2. Philo JS (2000) A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem 279:151–163

    Article  CAS  PubMed  Google Scholar 

  3. Schuck P (2000) Size distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brookes E, Cao W, Demeler B (2010) A two-dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39:405–414

    Article  PubMed  Google Scholar 

  5. Oda M, Uchiyama S, Noda M et al (2009) Effects of antibody affinity and antigen valence on molecular forms of immune complexes. Mol Immunol 47:352–364

    Article  Google Scholar 

  6. Noda M, Uchiyama S, McKay AR et al (2011) Assembly states of the nucleosome assembly protein 1 (NAP-1) revealed by sedimentation velocity and non-denaturing mass spectrometry. Biochem J 436:101–112

    Article  CAS  PubMed  Google Scholar 

  7. Oda M, Uchiyama S, Robinson CV et al (2006) Regional and segmental flexibility of antibodies in interaction with antigens of different size. FEBS J 273:1476–1487

    Article  CAS  PubMed  Google Scholar 

  8. Nishi H, Miyajima M, Nakagami H et al (2010) Phase separation of an IgG1 antibody solution under a low ionic strength condition. Pharm Res 27:1348–1360

    Article  CAS  PubMed  Google Scholar 

  9. Svensson H (1954) The second order aberrations in the interferometric measurement of concentration gradients. Optica Acta 1:25–32

    Article  Google Scholar 

  10. Kingsbury JS, Laue TM (2011) Fluorescence-detected sedimentation in dilute and highly concentrated solutions. Methods Enzymol 492:283–304

    Article  CAS  PubMed  Google Scholar 

  11. Demeule B, Shire SJ, Liu J (2009) A therapeutic antibody and its antigen form different complexes in serum than in phosphate-buffered saline: a study by analytical ultracentrifugation. Anal Biochem 388:279–287

    Article  CAS  PubMed  Google Scholar 

  12. Cole JL, Lary JW, P Moody T, Laue TM (2008) Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 84:143–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamm O (1929) Die differentialgleichung der ultrazentrifugierung. Ark Mater Astr Fys 21B:1–4

    Google Scholar 

  14. Zhao H, Brown PH, Balbo A et al (2010) Accounting for solvent signal offsets in the analysis of interferometric sedimentation velocity data. Macromol Biosci 10:736–745

    Article  CAS  PubMed  Google Scholar 

  15. Schuck P (2005) Diffusion-deconvoluted sedimentation coefficient distributions for the analysis of interacting and non-interacting protein mixtures. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge, pp 26–49

    Google Scholar 

  16. Demeler B (2005) Ultrascan: a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Analytical ultracentrifugation: techniques and methods. RSC Publishing, Cambridge, pp 210–229

    Google Scholar 

  17. Schuck P, Rossmanith P (2000) Determination of the sedimentation coefficient distribution g*(s) by least-squares boundary modeling. Biopolymers 54:328–341

    Article  CAS  PubMed  Google Scholar 

  18. Demeler B, van Holde KE (2004) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335:279–288

    Article  CAS  PubMed  Google Scholar 

  19. Brookes E, Demeler B, Rosano C, Rocco M (2010) The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Eur Biophys J 39:423–435

    Article  CAS  PubMed  Google Scholar 

  20. Ortega A, Amorós D, Garcia de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nogi T, Yasui N, Mihara E et al (2010) Structural basis for semaphorin signalling through the plexin receptor. Nature 467:1123–1127

    Article  CAS  PubMed  Google Scholar 

  22. Dam J, Velikovsky CA, Mariuzza RA et al (2005) Sedimentation velocity analysis of heterogeneous protein-protein interactions: Lamm equation modeling and sedimentation coefficient distributions c(s). Biophys J 89:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Padrick SB, Deka RK, Chuang JL et al (2010) Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments. Anal Biochem 407:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Padrick SB, Brautigam CA (2011) Evaluating the stoichiometry of macromolecular complexes using multisignal sedimentation velocity. Methods 54:39–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Houtman JC, Yamaguchi H, Barda-Saad M et al (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798–805

    Article  CAS  PubMed  Google Scholar 

  26. Barda-Saad M, Shirasu N, Pauker MH et al (2010) Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 29:2315–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Edelstein SJ, Schachman HK (1967) The simultaneous determination of partial specific volumes and molecular weights with microgram quantities. J Biol Chem 242:306–311

    CAS  PubMed  Google Scholar 

  28. Brown PH, Balbo A, Zhao H et al (2011) Density contrast sedimentation velocity for the determination of protein partial-specific volumes. PLoS One 6:e26221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao H, Ghirlando R, Piszczek G et al (2013) Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Anal Biochem 437:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghirlando R, Balbo A, Piszczek G et al (2013) Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Anal Biochem 440:81–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Uchiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this protocol

Cite this protocol

Krayukhina, E., Uchiyama, S. (2016). Analytical Ultracentrifugation. In: Senda, T., Maenaka, K. (eds) Advanced Methods in Structural Biology. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56030-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56030-2_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56028-9

  • Online ISBN: 978-4-431-56030-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics