Skip to main content

Whole-Cell Patch Method

  • Protocol
Patch Clamp Techniques

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

With the whole-cell mode of patch-clamp the membrane current is recorded from a cell under the voltage-clamp. The membrane potential response of a cell is also measured and manipulated under a current-clamp. The method enables one to correlate the macroscopic aspects of ion channels with their microscopic properties. It also demonstrates how these ion channels regulate the membrane potential. This chapter summarizes the basic concepts of whole-cell patch-clamp recording and the practical procedures and protocols used to examine currents through channels/transporters across entire cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  2. Brown AM, Wilson DL, Tsuda Y (1985) Voltage clamp and internal perfusion with suction-pipette method. In: Smith TG Jr, Lecar H, Redman SJ, Gage PW (eds) Voltage and patch clamping with microelectrodes. American Physiological Society, Bethesda, pp 151–169

    Google Scholar 

  3. Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  4. Nicholls JG, Martin AR, Wallace BG (1992) From neuron to brain, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  5. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Article  PubMed  CAS  Google Scholar 

  6. Marty A, Neher E (1983) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 107–122

    Chapter  Google Scholar 

  7. Marty A, Neher E (1995) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum press, New York, pp 31–52

    Google Scholar 

  8. Yamane D (ed) (2008) The axon guide, 3rd edn. MDS analytical technologies, Sunnyvale http://www.moleculardevices.com/pdfs/Axon_Guide.pdf

  9. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch 414:600–612

    Article  PubMed  CAS  Google Scholar 

  10. Yawo H (1989) Rectification of synaptic and acetylcholine currents in the mouse submandibular ganglion cells. J Physiol Lond 417:307–322

    PubMed  CAS  Google Scholar 

  11. Yawo H (1999) Involvement of cGMP-dependent protein kinase in adrenergic potentiation of transmitter release from the calyx-type presynaptic terminal. J Neurosci 19:5293–5300

    PubMed  CAS  Google Scholar 

  12. Yawo H, Momiyama A (1993) Re-evaluation of calcium currents in pre-and postsynaptic neurones of the chick ciliary ganglion. J Physiol Lond 460:153–172

    PubMed  CAS  Google Scholar 

  13. Blanton MG, Lo Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210

    Article  PubMed  CAS  Google Scholar 

  14. Coleman PA, Miller RF (1989) Measurement of passive membrane parameters with whole cell recording from neurons in the intact amphibian retina. J Neurophysiol 61:218–230

    PubMed  CAS  Google Scholar 

  15. Manabe T, Renner P, Nicoll RA (1992) Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355:50–55

    Article  PubMed  CAS  Google Scholar 

  16. Purves D, Hadley RD, Voyvodic JT (1986) Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice. J Neurosci 6:1051–1060

    PubMed  CAS  Google Scholar 

  17. Stuart GJ, Dodt H-U, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518

    Article  PubMed  CAS  Google Scholar 

  18. Armstrong CM, Gilly WF (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207:100–122

    Article  PubMed  CAS  Google Scholar 

  19. Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol Lond 331:577–597

    PubMed  CAS  Google Scholar 

  20. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  PubMed  CAS  Google Scholar 

  21. Malecot CO, Feindt P, Trautwein W (1988) Intracellular n-methyl-d-glucamine modifies the kinetics and voltage-dependence of the calcium current in guinea pig ventricular heart cells. Pflugers Arch 411:235–242

    Article  PubMed  CAS  Google Scholar 

  22. Forscher P, Oxford GS (1985) Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol 85:743–763

    Article  PubMed  CAS  Google Scholar 

  23. Borst JGG, Helmehen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol Lond 489:825–840

    PubMed  CAS  Google Scholar 

  24. Jackson MB (1992) Cable analysis with the whole-cell patch clamp, theory and experiment. Biophys J 61:756–766

    Article  PubMed  CAS  Google Scholar 

  25. Jackson MB (1993) Passive current flow and morphology in the terminal arborizations of the posterior pituitary. J Neurophysiol 69:692–702

    PubMed  CAS  Google Scholar 

  26. Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic- and agonist-induced excitatory currents of purkinje cells in rat cerebellar slices. J Physiol Lond 434:183–213

    PubMed  CAS  Google Scholar 

  27. Major G, Evans JD, Jack JJ (1993) Solutions for transients in arbitrary branching cables: I. voltage recording with a somatic shunt. Biophys J 65:423–449

    Article  PubMed  CAS  Google Scholar 

  28. Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modeling. J Physiol Lond 483:621–640

    PubMed  CAS  Google Scholar 

  29. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222

    Article  PubMed  CAS  Google Scholar 

  30. Puil E, Gimbarzevsky B, Miura RM (1986) Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol 55:995–1016

    PubMed  CAS  Google Scholar 

  31. Llinas R, Sugimori M, Simon SM (1982) Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci USA 79:2415–2419

    Article  PubMed  CAS  Google Scholar 

  32. Hori T, Takahashi T (2009) Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization. J Physiol Lond 587:2987–3000

    Article  PubMed  CAS  Google Scholar 

  33. Belles B, Malecot CO, Hescheler J, Trautwein W (1988) “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells, role of phosphorylation and intracellular calcium. Pflugers Arch 411:353–360

    Article  PubMed  CAS  Google Scholar 

  34. Hescheler J, Trautwein W (1988) Modification of L-type calcium current by intracellularly applied trypsin in guinea-pig ventricular myocytes. J Physiol Lond 404:259–274

    PubMed  CAS  Google Scholar 

  35. Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflugers Arch 407:123–128

    Article  PubMed  CAS  Google Scholar 

  36. Shuba YM, Hesslinger B, Trautwein W, McDonald TF, Pelzer D (1990) Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol Lond 424:205–228

    PubMed  CAS  Google Scholar 

  37. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  PubMed  CAS  Google Scholar 

  38. Beech DJ, Bernheim L, Mathie A, Hille B (1991) Intracelluar Ca2+ buffers disrupt muscarinic suppression of Ca2+ current and M current in rat sympathetic neurons. Proc Nat Acad Sci USA 88:652–656

    Article  PubMed  CAS  Google Scholar 

  39. Neher E (1988) The influence of intracellular calcium concentration on degranulation of dialysed mast cells from rat peritoneum. J Physiol Lond 395:193–214

    PubMed  CAS  Google Scholar 

  40. Neher E, Augustine GJ (1992) Calcium gradients and buffers in bovine chromaffin cells. J Physiol Lond 450:273–301

    PubMed  CAS  Google Scholar 

  41. Bormann J, Hamill OP, Sakman B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol Lond 385:243–286

    PubMed  CAS  Google Scholar 

  42. Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325:525–528

    Article  PubMed  CAS  Google Scholar 

  43. Hamill OP, Sakmann B (1981) Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature 294:462–464

    Article  PubMed  CAS  Google Scholar 

  44. Hamill OP, Bormann J, Sakmann B (1983) Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Nature 305:805–808

    Article  PubMed  CAS  Google Scholar 

  45. Jahr CE, Stevens CF (1987) Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325:522–525

    Article  PubMed  CAS  Google Scholar 

  46. Smith SM, Zorec R, McBurney RN (1989) Conductance states activated by glycine and GABA in rat cultured spinal neurones. J Membr Biol 108:45–52

    Article  PubMed  CAS  Google Scholar 

  47. Takahashi T, Momiyama A (1991) Single-channel currents underlying glycinergic inhibitory postsynaptic responses in spinal neurons. Neuron 7:965–969

    Article  PubMed  CAS  Google Scholar 

  48. Swandulla D, Armstrong CM (1988) Fast-deactivating calcium channels in chick sensory neurons. J Gen Physiol 92:197–218

    Article  PubMed  CAS  Google Scholar 

  49. Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland

    Google Scholar 

  50. Armstrong CM (1992) Voltage-dependent ion channels and their gating. Physiol Rev 72:S5–S13

    PubMed  CAS  Google Scholar 

  51. Field AC, Hill C, Lamb GD (1988) Asymmetric charge movement and calcium currents in ventricular myocytes of neonatal rat. J Physiol Lond 406:277–297

    PubMed  CAS  Google Scholar 

  52. Adams BA, Tanabe T, Mikami A, Numa S, Beam KG (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 34:569–572

    Article  Google Scholar 

  53. Kuba K, Nishi S (1979) Characteristics of fast excitatory postsynaptic current in bullfrog sympathetic ganglion cell. Effects of membrane potential, temperature and Ca ions. Pflugers Arch 378:205–212

    Article  PubMed  CAS  Google Scholar 

  54. Lipscombe D, Rang HP (1988) Nicotinic receptors of frog ganglia resemble pharmacologically those of skeletal muscle. J Neurosci 8:3258–3265

    PubMed  CAS  Google Scholar 

  55. Magleby KL, Stevens CF (1972) The effect of voltage on the time course of end-plate currents. J Physiol Lond 223:151–171

    PubMed  CAS  Google Scholar 

  56. Colquhoun D, Hawkes AG (1983) The principles of the stochastic interpretation of ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 135–175

    Chapter  Google Scholar 

  57. Adams PR (1977) Relaxation experiments using bath-applied suberyldicholine. J Physiol Lond 268:271–289

    PubMed  CAS  Google Scholar 

  58. Adams PR (1977) Voltage jump analysis of procaine action at frog end-plate. J Physiol Lond 268:291–318

    PubMed  CAS  Google Scholar 

  59. Ascher P, Large WA, Rang HP (1979) Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol Lond 295:139–170

    PubMed  CAS  Google Scholar 

  60. Colquhoun D, Dreyer F, Sheridan RE (1979) The actions of tubocurarine at the frog neuromuscular junction. J Physiol Lond 293:247–284

    PubMed  CAS  Google Scholar 

  61. Neher E, Sakmann B (1975) Voltage-dependence of drug-induced conductance in frog neuromuscular junction. Proc Nat Acad Sci USA 72:2140–2144

    Article  PubMed  CAS  Google Scholar 

  62. Rang HP (1981) The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells. J Physiol Lond 311:23–55

    PubMed  CAS  Google Scholar 

  63. Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J Physiol Lond 235:655–691

    PubMed  CAS  Google Scholar 

  64. Colquhoun D, Hawkes AG (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc Roy Soc Lond B 199:231–262

    Article  CAS  Google Scholar 

  65. Howe JR, Colquhoun D, Cull-Candy SG (1988) On the kinetics of large-conductance glutamate-receptor ion channels in rat cerebellar granule neurons. Proc Roy Soc Lond B 233:407–422

    Article  CAS  Google Scholar 

  66. Armstrong CM, Bezanilla FM, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375–391

    Article  PubMed  CAS  Google Scholar 

  67. Oxford GS, Wu CH, Narahashi T (1978) Removal of sodium channel inactivation in squid axons by n-bromoacetamide. J Gen Physiol 71:227–247

    Article  PubMed  CAS  Google Scholar 

  68. Wang GK, Brodwick MS, Eaton DC (1985) Removal of Na channel inactivation in squid axon by an oxidant chloramine-T. J Gen Physiol 86:289–302

    Article  PubMed  CAS  Google Scholar 

  69. Gonoi T, Hille B (1987) Gating of Na channels. Inactivation modifiers discriminate among models. J Gen Physiol 89:253–274

    Article  PubMed  CAS  Google Scholar 

  70. Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    Article  PubMed  CAS  Google Scholar 

  71. Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  PubMed  CAS  Google Scholar 

  72. Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76

    Article  PubMed  CAS  Google Scholar 

  73. Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76

    Article  PubMed  CAS  Google Scholar 

  74. Gola M, Crest M (1993) Colocalization of active KCa channels and Ca2+ channels within Ca2+ domains in Helix neurons. Neuron 10:689–699

    Article  PubMed  CAS  Google Scholar 

  75. Lancaster B, Nicoll RA (1978) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol Lond 389:187–203

    Google Scholar 

  76. Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    PubMed  CAS  Google Scholar 

  77. Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645–655

    Article  PubMed  CAS  Google Scholar 

  78. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  PubMed  CAS  Google Scholar 

  79. Kavalali ET, Zhuo M, Bito H, Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18:651–663

    Article  PubMed  CAS  Google Scholar 

  80. Meir A, Ginsborg S, Butkevich A, Kachalsky SB, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 79:1019–1088

    PubMed  CAS  Google Scholar 

  81. Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939

    Article  PubMed  CAS  Google Scholar 

  82. Haydon PG, Man-Son-Hing H (1988) Low- and high-voltage-activated calcium currents, their relationship to the site of neurotransmitter release in an identified neuron of Helisoma. Neuron 1:919–927

    Article  PubMed  CAS  Google Scholar 

  83. Man-Son-Hing H, Haydon PG (1992) Modulation of growth cone calcium current is mediated by a PTX-sensitive G protein. Neurosci Lett 137:133–136

    Article  PubMed  CAS  Google Scholar 

  84. Gottmann K, Roher H, Lux HD (1991) Distribution of Ca2+ and Na+ conductances during neuronal differentiation of chick DRG precursor cells. J Neurosci 11:3371–3378

    PubMed  CAS  Google Scholar 

  85. Streit J, Lux HD (1989) Distribution of calcium currents in sprouting PC-12 cells. J Neurosci 9:4190–4199

    PubMed  CAS  Google Scholar 

  86. Thomas P, Surprenant A, Almers W (1990) Cytosolic Ca2+, exocytosis, and endocytosis in single melanotrophs of the rat pituitary. Neuron 5:723–733

    Article  PubMed  CAS  Google Scholar 

  87. Kataoka Y, Ohmori H (1994) Activation of glutamate receptors in response to membrane depolarization of hair cells isolated from chick cochlea. J Physiol Lond 477:403–414

    PubMed  CAS  Google Scholar 

  88. Yawo H (1990) Voltage-activated calcium currents in presynaptic nerve terminals of the chicken ciliary ganglion. J Physiol Lond 428:199–213

    PubMed  CAS  Google Scholar 

  89. Delcour AH, Tsien RW (1993) Altered prevalence of gating modes in neurotransmitter inhibition of N-type calcium channels. Science 259:980–984

    Article  PubMed  CAS  Google Scholar 

  90. Plummer MR, Hess P (1991) Reversible uncoupling of inactivation in N-type calcium channels. Nature 351:657–659

    Article  PubMed  CAS  Google Scholar 

  91. Plummer MR, Logothetis DE, Hess P (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2:1453–1463

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromu Yawo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this protocol

Cite this protocol

Yawo, H. (2012). Whole-Cell Patch Method. In: Okada, Y. (eds) Patch Clamp Techniques. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53993-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53993-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53992-6

  • Online ISBN: 978-4-431-53993-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics