Skip to main content

Ion Channel Pore Sizing in Patch-Clamp Experiments

  • Protocol
Patch Clamp Techniques

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The physical dimensions of an ion channel pore can be estimated in patch-clamp experiments using various charged and noncharged molecular probes. Measuring the permeability to organic ions of different size and shape yields an estimate of the size of the narrowest part of the selectivity filter. Open-channel blockers represent another frequently used tool to estimate the size of an ion channel pore near the binding pocket. The special case of permeable blockage yields the size of the narrowest portion of the ion-transporting pathway. Noncharged molecular probes may also affect ionic currents through channels either by blocking them or by decreasing the effective ionic mobility within the pore. Size-dependent suppression of single-channel amplitudes by neutral polymers, such as polyethylene glycols, can be interpreted in terms of molecular partitioning between the bulk solution and pore interior. This allows us to gauge the size of channel vestibules based on standard patch-clamp data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc, Sunderland, MA

    Google Scholar 

  2. Dwyer TM, Adams DJ, Hille B (1980) The permeability of the endplate channel to organic cations in frog muscle. J Gen Physiol 75:469–492

    Article  PubMed  CAS  Google Scholar 

  3. Bormann J, Hamill OP, Sakmann B (1987) Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol 385:243–286

    PubMed  CAS  Google Scholar 

  4. Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614

    Article  PubMed  CAS  Google Scholar 

  5. Okada Y (1997) Volume expansion-sensing outward rectifier Cl channel: a fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755–C789

    PubMed  CAS  Google Scholar 

  6. Okada Y, Sato K, Toychiev AH, Suzuki M, Dutta AK, Inoue H, Sabirov R (2009) The puzzles of volume-activated anion channels. In: Alvarez-Leefmans FJ, Delpire E (eds) Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. From Molecules to Diseases, Elsevier, San Diego, pp 283–306

    Google Scholar 

  7. Sabirov RZ, Okada Y (2005) ATP release via anion channels. Purinergic Signal 1:311–328

    Article  PubMed  CAS  Google Scholar 

  8. Sabirov RZ, Okada Y (2009) The maxi-anion channel: a classical channel playing novel roles through an unidentified molecular entity. J Physiol Sci 59:3–21

    Article  PubMed  CAS  Google Scholar 

  9. Robinson RA, Stokes RH (1959) Electrolyte solutions. Butterworths, London

    Google Scholar 

  10. Droogmans G, Maertens C, Prenen J, Nilius B (1999) Sulphonic acid derivatives as probes of pore properties of volume- regulated anion channels in endothelial cells. Br J Pharmacol 128:35–40

    Article  PubMed  CAS  Google Scholar 

  11. Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. John Willew & Sons, New York

    Google Scholar 

  12. Sabirov R, Krasilnikov OV, Ternovsky VI, Merzliak PG, Muratkhodjaev JN (1991) Influence of some nonelectrolytes on conductivity of bulk solution and conductance of ion channels: determination of pore radius from electric measurements. Biologicheskie Membrany 8: 280–291

    CAS  Google Scholar 

  13. Sabirov RZ, Krasilnikov OV, Ternovsky VI, Merzliak PG (1993) Relation between ionic channel conductance and conductivity of media containing different nonelectrolytes: a novel method of pore size determination. Gen Physiol Biophys 12:95–111

    PubMed  CAS  Google Scholar 

  14. Krasilnikov OV, Sabirov RZ, Ternovsky VI, Merzliak PG, Muratkhodjaev JN (1992) A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol 5:93–100

    Article  PubMed  CAS  Google Scholar 

  15. Bezrukov S, Kasianowicz JJ (2002) Dynamic partitioning of neutral polymers into a single ion channel. In: Kasianowicz JJ, Kellernayer MSZ, Deamer DW (eds) Structure and Dynamics of Confined Polymers. Kluwer Publisher, Dordrecht, The Neatherlads, pp 93–106

    Google Scholar 

  16. Krasilnikov OV (2002) Sizing channel with polymers. In: Kasianowicz JJ, Kellernayer MSZ, Deamer DW (eds) Structure and Dynamics of Confined Polymers. Kluwer Publisher, Dordrecht, The Netherlands, pp 73–91

    Google Scholar 

  17. Merzlyak PG, Yuldasheva LN, Rodrigues CG, Carneiro CM, Krasilnikov OV, Bezrukov SM (1999) Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel. Biophys J 77:3023–3033

    Article  PubMed  CAS  Google Scholar 

  18. Rostovtseva TK, Nestorovich EM, Bezrukov SM (2002) Partitioning of differently sized poly(ethylene glycol)s into OmpF porin. Biophys J 82:160–169

    Article  PubMed  CAS  Google Scholar 

  19. Krasilnikov OV, Carneiro CM, Yuldasheva LN, Campos-de-Carvalho AC, Nogueira RA (1996) Diameter of the mammalian porin channel in open and “closed” states: direct measurement at the single channel level in planar lipid bilayer. Braz J Med Biol Res 29:1691–1697

    PubMed  CAS  Google Scholar 

  20. Carneiro CM, Krasilnikov OV, Yuldasheva LN, Campos de Carvalho AC, Nogueira RA (1997) Is the mammalian porin channel, VDAC, a perfect cylinder in the high conductance state? FEBS Lett 416:187–189

    Article  PubMed  CAS  Google Scholar 

  21. Carneiro CM, Merzlyak PG, Yuldasheva LN, Silva LG, Thinnes FP, Krasilnikov OV (2003) Probing the volume changes during voltage gating of Porin 31BM channel with nonelectrolyte polymers. Biochim Biophys Acta 1612:144–153

    Article  PubMed  CAS  Google Scholar 

  22. Sabirov RZ, Okada Y (2004) Wide nanoscopic pore of maxi-anion channel suits its function as an ATP-conductive pathway. Biophys J 87: 1672–1685

    Article  PubMed  CAS  Google Scholar 

  23. Ternovsky VI, Okada Y, Sabirov RZ (2004) Sizing the pore of the volume-sensitive anion channel by differential polymer partitioning. FEBS Lett 576:433–436

    Article  PubMed  CAS  Google Scholar 

  24. Sabirov RZ, Ternovsky VI, Krasilnikov OV, Okada Y (2009) Gauging the pore size of three putative ATP releasing pathways by polymer partitioning. J Physiol Sci 59 (Suppl 1):392 (Abstract)

    Google Scholar 

  25. Krasilnikov OV, Sabirov RZ, Okada Y (2011) ATP hydrolysis-dependent asymmetry of the conformation of CFTR channel pore. J Physiol Sci 61:267–378

    Google Scholar 

  26. Krasilnikov OV, Da Cruz JB, Yuldasheva LN, Varanda WA, Nogueira RA (1998) A novel approach to study the geometry of the water lumen of ion channels: colicin Ia channels in planar lipid bilayers. J Membr Biol 161:83–92

    Article  PubMed  CAS  Google Scholar 

  27. Bezrukov S, Vodyanoy I, Brutyan R, Kasianowicz JJ (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29:8517–8522

    Article  CAS  Google Scholar 

  28. Movileanu L, Bayley H (2001) Partitioning of a polymer into a nanoscopic protein pore obeys a simple scaling law. Proc Natl Acad Sci USA 98:10137–10141

    Article  PubMed  CAS  Google Scholar 

  29. Movileanu L, Cheley S, Bayley H (2003) Partitioning of individual flexible polymers into a nanoscopic protein pore. Biophys J 85: 897–910

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravshan Z. Sabirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this protocol

Cite this protocol

Sabirov, R.Z., Okada, Y. (2012). Ion Channel Pore Sizing in Patch-Clamp Experiments. In: Okada, Y. (eds) Patch Clamp Techniques. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53993-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53993-3_26

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53992-6

  • Online ISBN: 978-4-431-53993-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics