Role of Ion Channels in Plants

  • Rainer Hedrich
  • Dirk Becker
  • Dietmar Geiger
  • Irene Marten
  • M. Rob G. Roelfsema
Part of the Springer Protocols Handbooks book series (SPH)


When the second patch-clamp book of Sakmann and Neher appeared in 1995 (Sakmann and Neher, Single-channel recording, 2nd edn. Plenum Press, New York, 1995), the molecular nature of plant ion channels was still in its infancy. Since 1995, various members of the Shaker-, Two-Pore-, and KCO-type potassium channels have been identified; and their cellular and subcellular localizations have been resolved. The function of major K+ channels has been characterized in its natural environment of plant cells and after heterologous expression. Just a few years ago, the first genes encoding plant plasma membrane anion channels were identified and shown to encode channels mediating Slow/SLAC-type and Rapid/QUAC-type currents. Distinct members of the potassium and anion channel families are involved in volume regulation, nutrient sensing, and uptake. Among them the K+ channel AKT1 and anion channel SLAC1 are addressed in a calcium-dependent manner. Thereby, protein kinase–channel interaction and transphosphorylation are the keys to channel opening. In contrast to animal cells, plant cells are equipped with a large central vacuole. This acidic internal organelle provides for dynamic storage of ions and nutrients. Using isolated vacuoles from the model plant Arabidopsis thaliana in combination with transient overexpression approaches, major and low abundant ion channels and transporters could be characterized. This chapter provides insights into the current state of the plant ion channel field and introduces new approaches with patch-clamping plant cells and vacuoles.


Pollen Tube Guard Cell Anion Channel Vacuolar Membrane Nonselective Cation Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sakmann B, Neher E (1995) Single-channel recording, 2nd edn. Plenum Press, New YorkGoogle Scholar
  2. 2.
    Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard-cell protoplasts of Vicia faba. Nature 312(5992):361–362Google Scholar
  3. 3.
    Hedrich R, Schroeder JI, Fernandez JM (1987) Patch-clamp studies on higher-plant cells: a perspective. Trends Biochem Sci 12(2):49–52Google Scholar
  4. 4.
    Moran N, Ehrenstein G, Iwasa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman: a patch-clamp study. Plant Physiol 88(3):643–648PubMedGoogle Scholar
  5. 5.
    Satter RL, Moran N (1988) Ionic channels in plant-cell membranes. Physiol Plant 72(4):816–820Google Scholar
  6. 6.
    Iijima T, Hagiwara S (1987) Voltage-dependent K channels in protoplasts of trap-lobe cells of Dionaea muscipula. J Membr Biol 100(1):73–81PubMedGoogle Scholar
  7. 7.
    Schroeder JI, Hedrich R (1989) Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem Sci 14(5):187–192PubMedGoogle Scholar
  8. 8.
    Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 40:539–569Google Scholar
  9. 9.
    Hedrich R, Becker D (1994) Green circuits–the potential of plant specific ion channels. Plant Mol Biol 26(5):1637–1650PubMedGoogle Scholar
  10. 10.
    Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256(5057):663–665PubMedGoogle Scholar
  11. 11.
    Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89(9):3736–3740PubMedGoogle Scholar
  12. 12.
    Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123PubMedGoogle Scholar
  13. 13.
    Hedrich R, Anschütz U, Becker D (2011) The plant plasma membrane, plant cell monographs. In: Murphy AS, Peer W, Schulz B (eds) Biology of plant potassium channels, vol 19. Springer, Heidelberg, pp 253–274Google Scholar
  14. 14.
    Brüggemann L, Dietrich P, Becker D, Dreyer I, Palme K, Hedrich R (1999) Channel-mediated high-affinity K+ uptake into guard cells from Arabidopsis. Proc Natl Acad Sci USA 96(6):3298–3302PubMedGoogle Scholar
  15. 15.
    Muller-Rober B, Ellenberg J, Provart N, Willmitzer L, Busch H, Becker D, Dietrich P, Hoth S, Hedrich R (1995) Cloning and electrophysiological analysis of KST1, an inward rectifying K+ channel expressed in potato guard cells. EMBO J 14(11):2409–2416PubMedGoogle Scholar
  16. 16.
    Nakamura RL, McKendree WL Jr, Hirsch RE, Sedbrook JC, Gaber RF, Sussman MR (1995) Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol 109(2):371–374PubMedGoogle Scholar
  17. 17.
    Hoth S, Dreyer I, Dietrich P, Becker D, Muller-Rober B, Hedrich R (1997) Molecular basis of plant-specific acid activation of K+ uptake channels. Proc Natl Acad Sci USA 94(9):4806–4810PubMedGoogle Scholar
  18. 18.
    Hoth S, Geiger D, Becker D, Hedrich R (2001) The pore of plant K+ channels is involved in voltage and pH sensing: domain-swapping between different K+ channel alpha-subunits. Plant Cell 13(4):943–952PubMedGoogle Scholar
  19. 19.
    Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent ­stomatal opening. J Exp Bot 52(363):1959–1967PubMedGoogle Scholar
  20. 20.
    Mouline K, Very AA, Fdr G, Boucherez J, Pilot G, Devic M, Bouchez D, Thibaud J-B, Sentenac H (2002) Pollen tube development and competitive ability are impaired by disruption of a Shaker K+ channel in Arabidopsis. Genes Dev 16(3):339–350PubMedGoogle Scholar
  21. 21.
    Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci USA 98(5):2917–2921PubMedGoogle Scholar
  22. 22.
    Ivashikina N, Deeken R, Fischer S, Ache P, Hedrich R (2005) AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J Gen Physiol 125(5):483–492PubMedGoogle Scholar
  23. 23.
    Latz A, Ivashikina N, Fischer S, Ache P, Sano T, Becker D, Deeken R, Hedrich R (2007) In planta AKT2 subunits constitute a pH- and Ca2+-sensitive inward rectifying K+ channel. Planta 225(5):1179–1191PubMedGoogle Scholar
  24. 24.
    Dreyer I, Poree F, Schneider A, Mittelstadt J, Bertl A, Sentenac H, Thibaud JB, Mueller-Roeber B (2004) Assembly of plant Shaker-like Kout channels requires two distinct sites of the channel alpha-subunit. Biophys J 87(2):858–872PubMedGoogle Scholar
  25. 25.
    Kwak JM, Murata Y, Baizabal-Aguirre VM, Merrill J, Wang M, Kemper A, Hawke SD, Tallman G, Schroeder JI (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis. Plant Physiol 127(2):473–485PubMedGoogle Scholar
  26. 26.
    Lebaudy A, Vavasseur A, Hosy E, Dreyer I, Leonhardt N, Thibaud JB, Very AA, Simonneau T, Sentenac H (2008) Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc Natl Acad Sci USA 105(13):5271–5276PubMedGoogle Scholar
  27. 27.
    Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486(2):93–98PubMedGoogle Scholar
  28. 28.
    Johansson I, Wulfetange K, Poree F, Michard E, Gajdanowicz P, Lacombe B, Sentenac H, Thibaud JB, Mueller-Roeber B, Blatt MR, Dreyer I (2006) External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J 46(2):269–281PubMedGoogle Scholar
  29. 29.
    Michard E, Dreyer I, Lacombe B, Sentenac H, Thibaud JB (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant J 44(5):783–797PubMedGoogle Scholar
  30. 30.
    Blatt MR (1992) K+ channels of stomatal guard-cells: characteristics of the inward rectifier and its control by pH. J Gen Physiol 99(4):615–644PubMedGoogle Scholar
  31. 31.
    Gajdanowicz P, Garcia-Mata C, Gonzalez W, Morales-Navarro SE, Sharma T, Gonzalez-Nilo FD, Gutowicz J, Mueller-Roeber B, Blatt MR, Dreyer I (2009) Distinct roles of the last transmembrane domain in controlling Arabidopsis K+ channel activity. New Phytol 182(2):380–391PubMedGoogle Scholar
  32. 32.
    Geiger D, Becker D, Lacombe B, Hedrich R (2002) Outer pore residues control the H+ and K+ sensitivity of the Arabidopsis potassium channel AKT3. Plant Cell 14(8):1859–1868PubMedGoogle Scholar
  33. 33.
    Marten I, Hoshi T (1998) The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 74(6):2953–2962PubMedGoogle Scholar
  34. 34.
    Lai HC, Grabe M, Jan YN, Jan LY (2005) The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel. Neuron 47(3):395–406PubMedGoogle Scholar
  35. 35.
    Li L, Liu K, Hu Y, Li D, Luan S (2008) Single mutations convert an outward K+ channel into an inward K+ channel. Proc Natl Acad Sci USA 105(8):2871–2876PubMedGoogle Scholar
  36. 36.
    Poree F, Wulfetange K, Naso A, Carpaneto A, Roller A, Natura G, Bertl A, Sentenac H, Thibaud JB, Dreyer I (2005) Plant Kin and Kout channels: approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras. Biochem Biophys Res Commun 332(2):465–473PubMedGoogle Scholar
  37. 37.
    Tang XD, Marten I, Dietrich P, Ivashikina N, Hedrich R, Hoshi T (2000) Histidine(118) in the S2-S3 linker specifically controls activation of the KAT1 channel expressed in Xenopus oocytes. Biophys J 78(3):1255–1269PubMedGoogle Scholar
  38. 38.
    Dreyer I, Blatt MR (2009) What makes a gate? The ins and outs of Kv-like K+ channels in plants. Trends Plant Sci 14(7):383–390PubMedGoogle Scholar
  39. 39.
    Latorre R, Munoz F, Gonzalez C, Cosmelli D (2003) Structure and function of potassium channels in plants: some inferences about the molecular origin of inward rectification in KAT1 channels. Mol Membr Biol 20(1):19–25PubMedGoogle Scholar
  40. 40.
    Daram P, Urbach S, Gaymard F, Sentenac H, Cherel I (1997) Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. EMBO J 16(12):3455–3463PubMedGoogle Scholar
  41. 41.
    Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508(3):463–469PubMedGoogle Scholar
  42. 42.
    Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54(383):781–788PubMedGoogle Scholar
  43. 43.
    Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol 113(6):909–918PubMedGoogle Scholar
  44. 44.
    Dennison KL, Robertson WR, Lewis BD, Hirsch RE, Sussman MR, Spalding EP (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127(3):1012–1019PubMedGoogle Scholar
  45. 45.
    Rubio F, Nieves-Cordones M, Aleman F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134(4):598–608PubMedGoogle Scholar
  46. 46.
    Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99(6):4079–4084PubMedGoogle Scholar
  47. 47.
    Hedrich R, Kudla J (2006) Calcium signaling networks channel plant K+ uptake. Cell 125(7):1221–1223PubMedGoogle Scholar
  48. 48.
    Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103(33):12625–12630PubMedGoogle Scholar
  49. 49.
    Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125(7):1347–1360PubMedGoogle Scholar
  50. 50.
    Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104(40):15959–15964PubMedGoogle Scholar
  51. 51.
    Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R (2009) Heteromeric AtKC1/AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. J Biol Chem 284(32):21288–21295PubMedGoogle Scholar
  52. 52.
    Wang Y, He L, Li HD, Xu J, Wu WH (2010) Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Res 20(7):826–837PubMedGoogle Scholar
  53. 53.
    Hedrich R, Busch H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma ­membrane of guard cells. EMBO J 9(12):3889–3892PubMedGoogle Scholar
  54. 54.
    Hedrich R, Jeromin A (1992) A new scheme of symbiosis: ligand- and voltage-gated anion channels in plants and animals. Philos Trans R Soc Lond B Biol Sci 338(1283):31–38PubMedGoogle Scholar
  55. 55.
    Keller BU, Hedrich R, Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341(6241):450–453Google Scholar
  56. 56.
    Marten I, Lohse G, Hedrich R (1991) Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells. Nature 353(6346):758–762Google Scholar
  57. 57.
    Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63(6):1054–1062PubMedGoogle Scholar
  58. 58.
    Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452(7186):483–486PubMedGoogle Scholar
  59. 59.
    Vahisalu T, Kollist H, Wang YF, Nishimura N, Chan WY, Valerio G, Lamminmaki A, Brosche M, Moldau H, Desikan R, Schroeder JI, Kangasjarvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452(7186):487–491PubMedGoogle Scholar
  60. 60.
    Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants: genes, regulations and functions. FEBS Lett 581(12):2357–2366PubMedGoogle Scholar
  61. 61.
    Levchenko V, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102(11):4203–4208PubMedGoogle Scholar
  62. 62.
    Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338:427–430Google Scholar
  63. 63.
    Geiger D, Scherzer S, Mumm P, Marten I, Ache P, Matschi S, Liese A, Wellmann C, Al-Rasheid KA, Grill E, Romeis T, Hedrich R (2010) Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107(17):8023–8028PubMedGoogle Scholar
  64. 64.
    Geiger D, Scherzer S, Mumm P, Stange A, Marten I, Bauer H, Ache P, Matschi S, Liese A, Al-Rasheid KA, Romeis T, Hedrich R (2009) Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci USA 106(50):21425–21430PubMedGoogle Scholar
  65. 65.
    Linder B, Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313(1):27–30PubMedGoogle Scholar
  66. 66.
    Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89(11):5025–5029PubMedGoogle Scholar
  67. 67.
    Camarasa C, Bidard F, Bony M, Barre P, Dequin S (2001) Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. Appl Environ Microbiol 67(9):4144–4151PubMedGoogle Scholar
  68. 68.
    Chen YH, Hu L, Punta M, Bruni R, Hillerich B, Kloss B, Rost B, Love J, Siegelbaum SA, Hendrickson WA (2010) Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467(7319):1074–1080PubMedGoogle Scholar
  69. 69.
    Mustilli A-C, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14(12):3089–3099PubMedGoogle Scholar
  70. 70.
    Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4(10):e327PubMedGoogle Scholar
  71. 71.
    Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiol Plant 61(3):377–383Google Scholar
  72. 72.
    Leung J, Bouvier-Durand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264(5164):1448–1452PubMedGoogle Scholar
  73. 73.
    Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochem 33(23):7278–7287PubMedGoogle Scholar
  74. 74.
    Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochem 33(23):7267–7277PubMedGoogle Scholar
  75. 75.
    Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324(5930):1064–1068PubMedGoogle Scholar
  76. 76.
    Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324(5930):1068–1071PubMedGoogle Scholar
  77. 77.
    Geiger D, Maierhofer T, Al-Rasheid KA, Scherzer S, Mumm P, Ache P, Grill E, Marten I, Hedrich R (2011) Fast abscisic acid signalling of stomatal closure via guard cell anion channel SLAH3 and ABA-receptor RCAR1. Science Signalling 17;4(173):ra32Google Scholar
  78. 78.
    Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells: large nitrate permeability. Plant Physiol 106(1):383–391PubMedGoogle Scholar
  79. 79.
    Dietrich P, Hedrich R (1994) Interconversion of fast and slow gating modes of GCAC1, a guard cell anion channel. Planta 195:301–304Google Scholar
  80. 80.
    Marten I, Busch H, Raschke K, Hedrich R (1993) Modulation and block of the plasma membrane anion channel of guard cells by stilbene derivatives. Eur Biophys J 21:7Google Scholar
  81. 81.
    Marten I, Zeilinger C, Redhead C, Landry DW, al-Awqati Q, Hedrich R (1992) Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J 11(10):3569–3575PubMedGoogle Scholar
  82. 82.
    Raschke K (2003) Alternation of the slow with the quick anion conductance in whole guard cells effected by external malate. Planta 217(4):651–657PubMedGoogle Scholar
  83. 83.
    Schroeder JI, Schmidt C, Sheaffer J (1993) Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5(12):1831–1841PubMedGoogle Scholar
  84. 84.
    Schwartz A, Ilan N, Schwarz M, Scheaffer J, Assmann SM, Schroeder JI (1995) Anion channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells. Plant Physiol 109(2):651–658PubMedGoogle Scholar
  85. 85.
    Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169(4):647–666PubMedGoogle Scholar
  86. 86.
    Kolb HA, Marten I, Hedrich R (1995) Hodgkin-Huxley analysis of a GCAC1 anion channel in the plasma membrane of guard cells. J Membr Biol 146(3):273–282PubMedGoogle Scholar
  87. 87.
    Schulz-Lessdorf B, Lohse G, Hedrich R (1996) GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism. Plant J 10(6):993–1004Google Scholar
  88. 88.
    Dietrich P, Hedrich R (1998) Anions permeate and gate GCAC1, a voltage-dependent guard cell anion channel. Plant J 15(4):479–487Google Scholar
  89. 89.
    Hedrich R, Marten I (1993) Malate-induced feedback regulation of plasma membrane anion channels could provide a CO2 sensor to guard cells. EMBO J 12(3):897–901PubMedGoogle Scholar
  90. 90.
    Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW (1994) Malate-sensitive anion channels enable guard-cells to sense changes in the ambient CO2 concentration. Plant J 6(5):741–748Google Scholar
  91. 91.
    Lohse G, Hedrich R (1995) Anions modify the response of guard-cell anion channels to auxin. Planta 197(3):546–552Google Scholar
  92. 92.
    Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex: a comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol 126(1):397–410PubMedGoogle Scholar
  93. 93.
    Pineros MA, Kochian LV (2001) A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize: identification and characterization of Al3+-induced anion channels. Plant Physiol 125(1):292–305PubMedGoogle Scholar
  94. 94.
    Ryan PR, Skerrett M, Findlay GP, Delhaize E, Tyerman SD (1997) Aluminum activates an anion channel in the apical cells of wheat roots. Proc Natl Acad Sci USA 94(12):6547–6552PubMedGoogle Scholar
  95. 95.
    Pineros MA, Cancado GM, Maron LG, Lyi SM, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1—an anion-selective transporter. Plant J 53(2):352–367PubMedGoogle Scholar
  96. 96.
    Konrad KR, Hedrich R (2008) The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. Plant J 55(1):161–173PubMedGoogle Scholar
  97. 97.
    Roelfsema MRG, Hedrich R (2010) Making sense out of Ca2+ signals: their role in regulating stomatal movements. Plant Cell Environ 33(3):305–321PubMedGoogle Scholar
  98. 98.
    Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620PubMedGoogle Scholar
  99. 99.
    Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427PubMedGoogle Scholar
  100. 100.
    McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181(2):275–294PubMedGoogle Scholar
  101. 101.
    White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511PubMedGoogle Scholar
  102. 102.
    Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107PubMedGoogle Scholar
  103. 103.
    Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma-membranes of guard cells of Vicia faba L. Planta 186(1):143–153PubMedGoogle Scholar
  104. 104.
    Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3(1):83–110Google Scholar
  105. 105.
    Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175(3):387–404PubMedGoogle Scholar
  106. 106.
    Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95(8):4778–4783PubMedGoogle Scholar
  107. 107.
    Stange A, Hedrich R, Roelfsema MRG (2010) Ca2+-dependent activation of guard cell anion channels, triggered by hyperpolarization, is promoted by prolonged depolarization. Plant J 62(2):265–276PubMedGoogle Scholar
  108. 108.
    Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147:S56–S62PubMedGoogle Scholar
  109. 109.
    Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(6797):731–734PubMedGoogle Scholar
  110. 110.
    Gelli A, Higgins VJ, Blumwald E (1997) Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiol 113(1):269–279PubMedGoogle Scholar
  111. 111.
    Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100(3):1456–1461PubMedGoogle Scholar
  112. 112.
    Zimmermann S, Nurnberger T, Frachisse JM, Wirtz W, Guern J, Hedrich R, Scheel D (1997) Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc Natl Acad Sci USA 94(6):2751–2755PubMedGoogle Scholar
  113. 113.
    Carpaneto A, Ivashikina N, Levchenko V, Krol E, Jeworutzki E, Zhu JK, Hedrich R (2007) Cold transiently activates calcium-permeable channels in Arabidopsis mesophyll cells. Plant Physiol 143(1):487–494PubMedGoogle Scholar
  114. 114.
    White PJ, Davenport RJ (2002) The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Physiol 130(3):1386–1395PubMedGoogle Scholar
  115. 115.
    Fairley K, Laver D, Walker NA (1991) Whole-cell and single-channel currents across the plasmalemma of corn shoot suspension cells. J Membr Biol 121(1):11–22PubMedGoogle Scholar
  116. 116.
    Roelfsema MRG & Prins HBA (1997) Ion channels in guard cells of Arabidopsis thaliana (L) Heynh. Planta 202(1):18–27Google Scholar
  117. 117.
    Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97(16):9323–9328PubMedGoogle Scholar
  118. 118.
    Jurkowski GI, Smith RK, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant Microbe Interact 17(5):511–520PubMedGoogle Scholar
  119. 119.
    Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104(36):14531–14536PubMedGoogle Scholar
  120. 120.
    Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292(5521):1486–1487PubMedGoogle Scholar
  121. 121.
    Dietrich P, Anschutz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12:80–93PubMedGoogle Scholar
  122. 122.
    Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124(4):1511–1514PubMedGoogle Scholar
  123. 123.
    Meyerhoff O, Muller K, Roelfsema MR, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222(3):418–427PubMedGoogle Scholar
  124. 124.
    Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383(1):36–48PubMedGoogle Scholar
  125. 125.
    Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303(5662):1364–1367PubMedGoogle Scholar
  126. 126.
    Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H, Umehara Y, Kouchi H, Murakami Y, Mulder L, Vickers K, Pike J, Downie JA, Wang T, Sato S, Asamizu E, Tabata S, Yoshikawa M, Murooka Y, Wu GJ, Kawaguchi M, Kawasaki S, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433(7025):527–531PubMedGoogle Scholar
  127. 127.
    Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775PubMedGoogle Scholar
  128. 128.
    Moran N, Ehrenstein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226(4676):835–838PubMedGoogle Scholar
  129. 129.
    Schönknecht G, Hedrich R, Junge W, Raschke K (1988) A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336:589–592Google Scholar
  130. 130.
    Pottosin II, Schonknecht G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 152(3):223–233PubMedGoogle Scholar
  131. 131.
    Hedrich R, Flügge U-I, Fernandez JM (1986) Patch-clamp studies of ion transport in isolated plant vacuoles. FEBS Lett 204:228–232Google Scholar
  132. 132.
    Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833–835Google Scholar
  133. 133.
    Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105(7):1081–1102PubMedGoogle Scholar
  134. 134.
    Meyer S, De Angeli A, Fernie AR, Martinoia E (2010) Intra- and extra-cellular excretion of carboxylates. Trends Plant Sci 15(1):40–47PubMedGoogle Scholar
  135. 135.
    Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58(1):83–102PubMedGoogle Scholar
  136. 136.
    Hedrich R, Barbier-Brygoo H, Felle H, Flügge UI, Lüttge U, Maathuis FJM, Marx S, Prins HBA, Raschke K, Schnabl H, Schroeder JI, Struve I, Taiz L, Ziegler P (1988) General mechanisms for solute transport across the tonoplast of plant vacuoles: a patch-clamp survey of ion channels and proton pumps. Bot Acta 101:7–13Google Scholar
  137. 137.
    Schulz-Lessdorf B, Hedrich R (1995) Protons and calcium modulate SV-type channels in the vacuolar-lysosomal compartment: channel interaction with calmodulin inhibitors. Planta 197:655–671Google Scholar
  138. 138.
    Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, Hille B, Kohler K, Kolb HA, MacRobbie E et al (1992) Electrical measurements on endomembranes. Science 258(5084):873–874PubMedGoogle Scholar
  139. 139.
    Hedrich R, Marten I (2011) TPC1–SV channels gain shape. Mol Plant 4(3):428–441PubMedGoogle Scholar
  140. 140.
    Ivashikina N, Hedrich R (2005) K+ currents through SV-type vacuolar channels are sensitive to elevated luminal sodium levels. Plant J 41(4):606–614PubMedGoogle Scholar
  141. 141.
    Pottosin II, Tikhonova LI, Hedrich R, Schönknecht G (1997) Slowly activating vacuolar channels cannot mediate Ca2+-induced Ca2+ release. Plant J 12(6):1387–1398Google Scholar
  142. 142.
    Pei ZM, Ward JM, Schroeder JI (1999) Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121(3):977–986PubMedGoogle Scholar
  143. 143.
    Carpaneto A, Cantu AM, Gambale F (2001) Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris. Planta 213(3):457–468PubMedGoogle Scholar
  144. 144.
    Pottosin II, Martinez-Estevez M, Dobrovinskaya OR, Muniz J, Schonknecht G (2004) Mechanism of luminal Ca2+ and Mg2+ action on the vacuolar slowly activating channels. Planta 219(6):1057–1070PubMedGoogle Scholar
  145. 145.
    Pottosin II, Martinez-Estevez M, Dobrovinskaya OR, Muniz J (2005) Regulation of the slow vacuolar channel by luminal potassium: role of surface charge. J Membr Biol 205(2):103–111PubMedGoogle Scholar
  146. 146.
    Perez V, Wherrett T, Shabala S, Muniz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59(14):3845–3855PubMedGoogle Scholar
  147. 147.
    Beyhl D, Hortensteiner S, Martinoia E, Farmer EE, Fromm J, Marten I, Hedrich R (2009) The fou2 mutation in the major vacuolar cation channel TPC1 confers tolerance to inhibitory luminal calcium. Plant J 58(5):715–723PubMedGoogle Scholar
  148. 148.
    Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434(7031):404–408PubMedGoogle Scholar
  149. 149.
    Furuichi T, Cunningham KW, Muto S (2001) A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol 42(9):900–905PubMedGoogle Scholar
  150. 150.
    Hashimoto K, Saito M, Matsuoka H, Iida K, Iida H (2004) Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1. Plant Cell Physiol 45(4):496–500PubMedGoogle Scholar
  151. 151.
    Kadota Y, Furuichi T, Ogasawara Y, Goh T, Higashi K, Muto S, Kuchitsu K (2004) Identification of putative voltage-dependent Ca2+-permeable channels involved in cryptogein-induced Ca2+ transients and defense responses in tobacco BY-2 cells. Biochem Biophys Res Commun 317(3):823–830PubMedGoogle Scholar
  152. 152.
    Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56(422):3051–3060PubMedGoogle Scholar
  153. 153.
    Ruas M, Rietdorf K, Arredouani A, Davis LC, Lloyd-Evans E, Koegel H, Funnell TM, Morgan AJ, Ward JA, Watanabe K, Cheng X, Churchill GC, Zhu MX, Platt FM, Wessel GM, Parrington J, Galione A (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol 20(8):703–709PubMedGoogle Scholar
  154. 154.
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572PubMedGoogle Scholar
  155. 155.
    Bonaventure G, Gfeller A, Rodriguez VM, Armand F, Farmer EE (2007) The fou2 gain-of-function allele and the wild-type allele of two pore channel 1 contribute to different extents or by different mechanisms to defense gene expression in Arabidopsis. Plant Cell Physiol 48(12):1775–1789PubMedGoogle Scholar
  156. 156.
    Dadacz-Narloch B, Beyhl D, Larisch C, López-Sanjurjo E, Reski R, Kuchitsu K, Müller T, Becker D, Schoenknecht G, Hedrich R (2011) A novel calcium binding site in the slow vacuolar cation channel TPC1 senses luminal calcium levels Plant Cell 23(7):2696–2707Google Scholar
  157. 157.
    Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA 93(19):10510–10514PubMedGoogle Scholar
  158. 158.
    Becker D, Geiger D, Dunkel M, Roller A, Bertl A, Latz A, Carpaneto A, Dietrich P, Roelfsema MR, Voelker C, Schmidt D, Mueller-Roeber B, Czempinski K, Hedrich R (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner. Proc Natl Acad Sci USA 101(44):15621–15626PubMedGoogle Scholar
  159. 159.
    Latz A, Becker D, Hekman M, Muller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R (2007) TPK1, a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins. Plant J 52(3):449–459PubMedGoogle Scholar
  160. 160.
    Hedrich R, Kurkdjian A (1988) Characterization of an anion-permeable channel from sugar beet vacuoles: effect of inhibitors. EMBO J 7(12):3661–3666PubMedGoogle Scholar
  161. 161.
    Krebs M, Beyhl D, Gorlich E, Al-Rasheid KA, Marten I, Stierhof YD, Hedrich R, Schumacher K (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc Natl Acad Sci USA 107(7):3251–3256PubMedGoogle Scholar
  162. 162.
    Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller II, Heyer AG, Marten I, Hedrich R, Neuhaus HE (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 154(2):665–677PubMedGoogle Scholar
  163. 163.
    Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, Meyer S, Schmidt U, Martinoia E, Neuhaus HE (2006) Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 18(12):3476–3490PubMedGoogle Scholar
  164. 164.
    Schulz A, Beyhl D, Marten I, Wormit A, Neuhaus E, Poschet G, Büttner M, Schneider S, Sauer N, Hedrich R. Plant J. 2011 Oct;68(1):129–136.doi: 10.1111/j.1365-313X.2011.04672.x. Epub 2011 Jul 27.PubMedGoogle Scholar
  165. 165.
    Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194PubMedGoogle Scholar
  166. 166.
    Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132(2):666–680PubMedGoogle Scholar
  167. 167.
    Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedGoogle Scholar
  168. 168.
    Marten I, Deeken R, Hedrich R, Roelfsema MRG (2010) Light-induced modification of plant plasma membrane ion transport. Plant Biology 12:64–79PubMedGoogle Scholar
  169. 169.
    Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedGoogle Scholar
  170. 170.
    Marten H, Konrad KR, Dietrich P, Roelfsema MR, Hedrich R (2007) Ca2+-dependent and -independent abscisic acid activation of plasma membrane anion channels in guard cells of Nicotiana tabacum. Plant Physiol 143(1):28–37PubMedGoogle Scholar
  171. 171.
    Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292(5524):2070–2072PubMedGoogle Scholar
  172. 172.
    Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U (2000) Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J 21(5):455–467PubMedGoogle Scholar
  173. 173.
    Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100(9):5549–5554PubMedGoogle Scholar
  174. 174.
    Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155(1):553–561PubMedGoogle Scholar
  175. 175.
    Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant Cell 9(3):409–423PubMedGoogle Scholar
  176. 176.
    Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282(5387):287–290PubMedGoogle Scholar
  177. 177.
    Sasaki T, Mori IC, Furuichi T, Munemasa S, Toyooka K, Matsuoka K, Murata Y, Yamamoto Y (2010) Closing plant stomata requires a homolog of an aluminum-activated malate transporter. Plant Cell Physiol 51(3):354–365PubMedGoogle Scholar
  178. 178.
    Romano LA, Miedema H, Assmann SM (1998) Ca2+-permeable, outwardly-rectifying K+ channels in mesophyll cells of Arabidopsis thaliana. Plant Cell Physiol 39(11):1133–1144PubMedGoogle Scholar
  179. 179.
    Qi Z, Kishigami A, Nakagawa Y, Iida H, Sokabe M (2004) A mechanosensitive anion channel in Arabidopsis thaliana mesophyll cells. Plant Cell Physiol 45(11):1704–1708PubMedGoogle Scholar
  180. 180.
    Diatloff E, Roberts M, Sanders D, Roberts SK (2004) Characterization of anion channels in the plasma membrane of Arabidopsis epidermal root cells and the identification of a citrate-permeable channel induced by phosphate starvation. Plant Physiol 136(4):4136–4149PubMedGoogle Scholar
  181. 181.
    Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141(4):1653–1665PubMedGoogle Scholar
  182. 182.
    Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123(9):1468–1479PubMedGoogle Scholar
  183. 183.
    Philippar K, Ivashikina N, Ache P, Christian M, Luthen H, Palme K, Hedrich R (2004) Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J 37(6):815–827PubMedGoogle Scholar
  184. 184.
    Cho MH, Spalding EP (1996) An anion channel in Arabidopsis hypocotyls activated by blue light. Proc Natl Acad Sci USA 93(15):8134–8138PubMedGoogle Scholar
  185. 185.
    Lewis BD, KarlinNeumann G, Davis RW, Spalding EP (1997) Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol 114(4):1327–1334PubMedGoogle Scholar
  186. 186.
    Colcombet J, Lelievre F, Thomine S, Barbier-Brygoo H, Frachisse JM (2005) Distinct pH regulation of slow and rapid anion channels at the plasma membrane of Arabidopsis thaliana hypocotyl cells. J Exp Bot 56(417):1897–1903PubMedGoogle Scholar
  187. 187.
    Thomine S, Zimmermann S, Guern J, BarbierBrygoo H (1995) ATP-dependent regulation of an anion channel at the plasma membrane of protoplasts from epidermal cells of Arabidopsis hypocotyls. Plant Cell 7(12):2091–2100PubMedGoogle Scholar
  188. 188.
    Frachisse JM, Thomine S, Colcombet J, Guern J, Barbier-Brygoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiol 121(1):253–261PubMedGoogle Scholar
  189. 189.
    Deeken R, Ivashikina N, Czirjak T, Philippar K, Becker D, Ache P, Hedrich R (2003) Tumour development in Arabidopsis thaliana involves the Shaker-like K+ channels AKT1 and AKT2/3. Plant J 34(6):778–787PubMedGoogle Scholar
  190. 190.
    Ghelis T, Dellis O, Jeannette E, Bardat F, Cornel D, Miginiac E, Rona JP, Sotta B (2000) Abscisic acid specific expression of RAB18 involves activation of anion channels in Arabidopsis thaliana suspension cells. FEBS Lett 474(1):43–47PubMedGoogle Scholar
  191. 191.
    Lew RR (1991) Substrate regulation of single potassium and chloride-ion channels in Arabidopsis plasma-membrane. Plant Physiol 95(2):642–647PubMedGoogle Scholar
  192. 192.
    Rienmuller F, Beyhl D, Lautner S, Fromm J, Al-Rasheid KA, Ache P, Farmer EE, Marten I, Hedrich R (2010) Guard cell-specific calcium sensitivity of high density and activity SV/TPC1 channels. Plant Cell Physiol 51(9):1548–1554PubMedGoogle Scholar
  193. 193.
    Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53(2):287–299PubMedGoogle Scholar
  194. 194.
    Scholz-Starke J, Carpaneto A, Gambale F (2006) On the interaction of neomycin with the slow vacuolar channel of Arabidopsis thaliana. J Gen Physiol 127(3):329–340PubMedGoogle Scholar
  195. 195.
    De Angeli A, Monachello D, Ephritikhine G, Frachisse JM, Thomine S, Gambale F, Barbier-Brygoo H (2006) The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442(7105):939–942PubMedGoogle Scholar
  196. 196.
    von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U (2010) CLC-b-mediated NO3/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiol 51(6):960–968PubMedGoogle Scholar
  197. 197.
    Kovermann P, Meyer S, Hortensteiner S, Picco C, Scholz-Starke J, Ravera S, Lee Y, Martinoia E (2007) The Arabidopsis vacuolar malate channel is a member of the ALMT family. Plant J 52(6):1169–1180PubMedGoogle Scholar
  198. 198.
    Hurth MA, Suh SJ, Kretzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137(3):901–910PubMedGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Rainer Hedrich
    • 1
    • 2
  • Dirk Becker
    • 1
  • Dietmar Geiger
    • 1
  • Irene Marten
    • 1
  • M. Rob G. Roelfsema
    • 1
  1. 1.Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, BiocenterWürzburg UniversityWürzburgGermany
  2. 2.King Saud University KSURiyadhSaudi Arabia

Personalised recommendations