Advertisement

Planar Lipid Bilayer Method for Studying Channel Molecules

  • Shigetoshi Oiki
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The planar lipid bilayer method is another way to examine channel molecules functionally at the single-molecule level. In contrast to patch-clamping, channel molecules are isolated from various biological resources and are reconstituted into an artificial membrane that has a defined lipid composition. Various techniques have been developed, from the conventional painting method to liposome-patch clamping. In this chapter, underlying principles and technical details for forming the planar lipid bilayer and methods for incorporating channel molecules into the bilayer are reviewed.

Keywords

Membrane Fusion Membrane Capacitance Access Resistance Glass Pipette Planar Lipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miller C (1986) Ion channel reconstitution. Plenum Press, New YorkCrossRefGoogle Scholar
  2. 2.
    Miller C, Racker E (1976) Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J Membr Biol 30(3):283–300PubMedGoogle Scholar
  3. 3.
    Montal M (1987) Reconstitution of channel proteins from excitable cells in planar lipid bilayer membranes. J Membr Biol 98(2):101–115PubMedCrossRefGoogle Scholar
  4. 4.
    Favre I, Sun YM, Moczydlowski E (1999) Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 294:287–304PubMedCrossRefGoogle Scholar
  5. 5.
    Morera FJ, Vargas G, Gonzalez C, Rosenmann E, Latorre R (2007) Ion-channel reconstitution. Methods Mol Biol 400:571–585PubMedCrossRefGoogle Scholar
  6. 6.
    Sattsangi S, Wonderlin WF (1999) Isolation of transport vesicles that deliver ion channels to the cell surface. Methods Enzymol 294:339–350PubMedCrossRefGoogle Scholar
  7. 7.
    Bezanilla F (1987) Single sodium channels from the squid giant axon. Biophys J 52(6):1087–1090PubMedCrossRefGoogle Scholar
  8. 8.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77PubMedCrossRefGoogle Scholar
  9. 9.
    MacKinnon R (2003) Potassium channels. FEBS Lett 555(1):62–65PubMedCrossRefGoogle Scholar
  10. 10.
    LeMasurier M, Heginbotham L, Miller C (2001) KcsA: it’s a potassium channel. J Gen Physiol 118(3):303–314PubMedCrossRefGoogle Scholar
  11. 11.
    Demarche S, Sugihara K, Zambelli T, Tiefenauer T, Voros J (2011) Techniques for recording reconstituted ion channels. Analyst 136:1077–1089PubMedCrossRefGoogle Scholar
  12. 12.
    Hanke W, Schlue W-R (1993) Planar lipid bilayers. In: Methods and applications. Academic Press, LondonGoogle Scholar
  13. 13.
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731PubMedCrossRefGoogle Scholar
  14. 14.
    von Heijne G, Rees D (2008) Membranes: reading between the lines. Curr Opin Struct Biol 18(4):403–405CrossRefGoogle Scholar
  15. 15.
    Tanford C (2004) Ben Franklin stilled the waves: an informal history of pouring oil on water with reflections on the ups and downs of scientific life in genera. Oxford University Press, New YorkGoogle Scholar
  16. 16.
    Langmuir I (1917) The Shapes of Group Molecules Forming the Surfaces of Liquids. Proc Natl Acad Sci USA 3(4):251–257PubMedCrossRefGoogle Scholar
  17. 17.
    Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, AmsterdamGoogle Scholar
  18. 18.
    Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980PubMedCrossRefGoogle Scholar
  19. 19.
    Hanai T, Haydon DA, Taylor J (1965) Polar group orientation and the electrical properties of lecithin bimolecular leaflets. J Theor Biol 9(2):278–296PubMedCrossRefGoogle Scholar
  20. 20.
    Takagi M, Azuma K, Kishimoto U (1965) A new method for the formation of bilayer membranes in aqueous solution. Annu Rep Biol Works Fac Sci Osaka Univ 13Google Scholar
  21. 21.
    Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53(6):741–757PubMedCrossRefGoogle Scholar
  22. 22.
    Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225(5231):451–453PubMedCrossRefGoogle Scholar
  23. 23.
    Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6:345–381PubMedCrossRefGoogle Scholar
  24. 24.
    Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802PubMedCrossRefGoogle Scholar
  25. 25.
    Sakmann B, Neher E (1995) Single-channel recording, 2nd edn. Plenum, New YorkCrossRefGoogle Scholar
  26. 26.
    Tabata KV, Sato K, Ide T, Nishizaka T, Nakano A, Noji H (2009) Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane. EMBO J 28(21):3279–3289PubMedCrossRefGoogle Scholar
  27. 27.
    Kapoor R, Kim JH, Ingolfson H, Andersen OS (2008) Preparation of artificial bilayers for electrophysiology experiments. J Vis Exp (20)Google Scholar
  28. 28.
    White SH (1986) The physical nature of planar bilayer membranes. In: Ion channel reconstitution. Plenum, New YorkGoogle Scholar
  29. 29.
    Wonderlin WF, Finkel A, French RJ (1990) Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys J 58(2):289–297PubMedCrossRefGoogle Scholar
  30. 30.
    Redwood WR, Pfeiffer FR, Weisbach JA, Thompson TE (1971) Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta 233(1):1–6PubMedCrossRefGoogle Scholar
  31. 31.
    Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 111(6):741–749PubMedCrossRefGoogle Scholar
  32. 32.
    Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW (2003) Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta 1609(2):177–182PubMedCrossRefGoogle Scholar
  33. 33.
    Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (1994) Langmuir-Blodgett films. Science 263(5154):1726–1733PubMedCrossRefGoogle Scholar
  34. 34.
    Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69(12):3561–3566PubMedCrossRefGoogle Scholar
  35. 35.
    Montal M (1973) Asymmetric lipid bilayers: response to multivalent ions. Biochim Biophys Acta 298(3):750–754PubMedCrossRefGoogle Scholar
  36. 36.
    Sherwood D, Montal M (1975) Transmembrane lipid migration in planar asymmetric bilayer membranes. Biophys J 15(5):417–434PubMedCrossRefGoogle Scholar
  37. 37.
    Chakrapani S, Cordero-Morales JF, Perozo E (2007) A quantitative description of KcsA gating I. macroscopic currents. J Gen Physiol 130(5):465–478PubMedCrossRefGoogle Scholar
  38. 38.
    Andersen OS (1983) Ion movement through gramicidin A channels: single-channel measurements at very high potentials. Biophys J 41(2):119–133PubMedCrossRefGoogle Scholar
  39. 39.
    Coronado R, Latorre R (1983) Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J 43(2):231–236PubMedCrossRefGoogle Scholar
  40. 40.
    Ehrlich BE (1992) Planar lipid bilayers on patch pipettes: bilayer formation and ion channel incorporation. Methods Enzymol 207:463–470PubMedCrossRefGoogle Scholar
  41. 41.
    Suarez-Isla BA, Wan K, Lindstrom J, Montal M (1983) Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipetts. Biochemistry 22(10):2319–2323PubMedCrossRefGoogle Scholar
  42. 42.
    Oiki S, Koeppe RE 2nd, Andersen OS (1995) Voltage-dependent gating of an asymmetric gramicidin channel. Proc Natl Acad Sci USA 92(6):2121–2125PubMedCrossRefGoogle Scholar
  43. 43.
    Oiki S, Koeppe RE II, Andersen OS (1997) Voltage-dependent gramicidin channels. In: Towards molecular biophysics of ion channels. Elsevier, AmsterdamGoogle Scholar
  44. 44.
    Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56(3):631–636PubMedCrossRefGoogle Scholar
  45. 45.
    Iwamoto M, Oiki S (2011) Counting ion and water molecules in a streaming file through the open-filter structure of a K channel. J Neurosci 31:12180–12188Google Scholar
  46. 46.
    Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117(2):165–180PubMedCrossRefGoogle Scholar
  47. 47.
    Niles WD, Levis RA, Cohen FS (1988) Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J 53(3):327–335PubMedCrossRefGoogle Scholar
  48. 48.
    Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261(5126):1280–1281PubMedCrossRefGoogle Scholar
  49. 49.
    Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359PubMedCrossRefGoogle Scholar
  50. 50.
    Lakshminarayanaiah N (1984) Equations of membrane biophysics. Academic, OrlandoGoogle Scholar
  51. 51.
    Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471–501PubMedCrossRefGoogle Scholar
  52. 52.
    Small DM (1986) The physical chemistry of lipids. From Alkanes to Phospholipids, Plenum, New YorkGoogle Scholar
  53. 53.
    Gruner SM, Cullis PR, Hope MJ, Tilcock CP (1985) Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem 14:211–238PubMedCrossRefGoogle Scholar
  54. 54.
    Boheim G, Hanke W, Eibl H (1980) Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport. Proc Natl Acad Sci USA 77(6):3403–3407PubMedCrossRefGoogle Scholar
  55. 55.
    Iwamoto M, Shimizu H, Inoue F, Konno T, Sasaki YC, Oiki S (2006) Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J Biol Chem 281(38):28379–28386PubMedCrossRefGoogle Scholar
  56. 56.
    Williamson IM, Alvis SJ, East JM, Lee AG (2003) The potassium channel KcsA and its interaction with the lipid bilayer. Cell Mol Life Sci 60(8):1581–1590PubMedCrossRefGoogle Scholar
  57. 57.
    Labarca P, Latorre R (1992) Insertion of ion channels into planar lipid bilayers by vesicle fusion. Methods Enzymol 207:447–463PubMedCrossRefGoogle Scholar
  58. 58.
    Cohen FS, Niles WD (1993) Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol 220:50–68PubMedCrossRefGoogle Scholar
  59. 59.
    Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683PubMedCrossRefGoogle Scholar
  60. 60.
    Helm CA, Israelachvili JN (1993) Forces between phospholipid bilayers and relationship to membrane fusion. Methods Enzymol 220:130–143PubMedCrossRefGoogle Scholar
  61. 61.
    Efremov RG, Nolde DE, Konshina AG, Syrtcev NP, Arseniev AS (2004) Peptides and proteins in membranes: what can we learn via computer simulations? Curr Med Chem 11(18):2421–2442PubMedCrossRefGoogle Scholar
  62. 62.
    Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123(3):375–382PubMedCrossRefGoogle Scholar
  63. 63.
    Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125(37):11144–11145PubMedCrossRefGoogle Scholar
  64. 64.
    Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125(21):6382–6383PubMedCrossRefGoogle Scholar
  65. 65.
    Woodbury DJ, Miller C (1990) Nystatin-induced liposome fusion: a versatile approach to ion channel reconstitution into planar bilayers. Biophys J 58(4):833–839PubMedCrossRefGoogle Scholar
  66. 66.
    Woodbury DJ (1999) Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol 294:319–339PubMedCrossRefGoogle Scholar
  67. 67.
    Singer MA (1975) Interaction of amphotericin B and nystatin with phospholipid bilayer membranes: effect of cholesterol. Can J Physiol Pharmacol 53(6):1072–1079PubMedCrossRefGoogle Scholar
  68. 68.
    Finkelstein A (1987) Water Movement Through Lipid Bilayers, Pores, and Plasma membranes. In: Theory and reality. Wiley-Interscience, New JerseyGoogle Scholar
  69. 69.
    Andersen OS (1984) Gramicidin channels. Annu Rev Physiol 46:531–548PubMedCrossRefGoogle Scholar
  70. 70.
    Andersen OS, Koeppe RE 2nd, Roux B (2005) Gramicidin channels. IEEE Trans Nanobiosci 4(1):10–20CrossRefGoogle Scholar
  71. 71.
    Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842PubMedCrossRefGoogle Scholar
  72. 72.
    Sherman-Gold R (1993) The axon guide for electrophysiology and biophysics laboratory techniques. Axon, Foster CityGoogle Scholar
  73. 73.
    Sigworth FJ (1995) Electronic design of patch clamp. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New YorkGoogle Scholar
  74. 74.
    Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, Hille B, Kohler K, Kolb HA, MacRobbie E et al (1992) Electrical measurements on endomembranes. Science 258(5084):873–874PubMedCrossRefGoogle Scholar
  75. 75.
    Armstrong CM, Gilly WF (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207:100–122PubMedCrossRefGoogle Scholar
  76. 76.
    Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414(6859):37–42PubMedCrossRefGoogle Scholar
  77. 77.
    Sigworth FJ (1985) Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys J 47(5):709–720PubMedCrossRefGoogle Scholar
  78. 78.
    Sigworth FJ, Urry DW, Prasad KU (1987) Open channel noise III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophys J 52(6):1055–1064PubMedCrossRefGoogle Scholar
  79. 79.
    Oiki S (2010) Single-channel structure-­function dynamics: the gating of potassium channels. In: Cell signaling reactions: single-molecular kinetic analysis. Springer, New YorkGoogle Scholar
  80. 80.
    Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associated, Inc, MAGoogle Scholar
  81. 81.
    Shin YK, Levinthal C, Levinthal F, Hubbell WL (1993) Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259(5097):960–963PubMedCrossRefGoogle Scholar
  82. 82.
    Menestrina G, Serra MD, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39(11):1661–1672PubMedCrossRefGoogle Scholar
  83. 83.
    Iwamoto M, Shimizu H, Muramatsu I, Oiki S (2010) A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett 584:3995–3999PubMedCrossRefGoogle Scholar
  84. 84.
    Hamada T, Matsunaga S, Yano G, Fusetani N (2005) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127(1):110–118PubMedCrossRefGoogle Scholar
  85. 85.
    Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S (2008) Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132(1):67–78PubMedCrossRefGoogle Scholar
  86. 86.
    Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5(6):459–469PubMedCrossRefGoogle Scholar
  87. 87.
    Takeuchi K, Takahashi H, Kawano S, Shimada I (2007) Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J Biol Chem 282(20):15179–15186PubMedCrossRefGoogle Scholar
  88. 88.
    Uysal S, Vasquez V, Tereshko V, Esaki K, Fellouse FA, Sidhu SS, Koide S, Perozo E, Kossiakoff A (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 106(16):6644–6649PubMedCrossRefGoogle Scholar
  89. 89.
    Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14(21):5170–5178PubMedGoogle Scholar
  90. 90.
    Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15(4):684–698PubMedCrossRefGoogle Scholar
  91. 91.
    Kelly BL, Gross A (2003) Potassium channel gating observed with site-directed mass tagging. Nat Struct Biol 10(4):280–284PubMedCrossRefGoogle Scholar
  92. 92.
    Gao L, Mi X, Paajanen V, Wang K, Fan Z (2005) Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc Natl Acad Sci USA 102(49):17630–17635PubMedCrossRefGoogle Scholar
  93. 93.
    Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13(4):311–318PubMedCrossRefGoogle Scholar
  94. 94.
    Thompson AN, Posson DJ, Parsa PV, Nimigean CM (2008) Molecular mechanism of pH sensing in KcsA potassium channels. Proc Natl Acad Sci USA 105(19):6900–6905PubMedCrossRefGoogle Scholar
  95. 95.
    Cuello LG, Cortes DM, Jogini V, Sompornpisut A, Perozo E (2010) A molecular mechanism for proton-dependent gating in KcsA. FEBS Lett 584(6):1126–1132PubMedCrossRefGoogle Scholar
  96. 96.
    Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between ­activation and inactivation gates in K+ channels. Nature 466(7303):272–275PubMedCrossRefGoogle Scholar
  97. 97.
    Schmidt D, Cross SR, MacKinnon R (2009) A gating model for the archeal voltage-dependent K+ channel KvAP in DPhPC and POPE:POPG decane lipid bilayers. J Mol Biol 390(5):902–912PubMedCrossRefGoogle Scholar
  98. 98.
    Yanagisawa M, Iwamoto M, Kato A, Yoshikawa K, Oiki S (2011) Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: Experimental verification with the potassium channel KcsA. J Am Chem Soc 133:11774–11779Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Molecular Physiology and Biophysics, School of MedicineUniversity of Fukui Faculty of Medical SciencesFukuiJapan

Personalised recommendations