Skip to main content

Planar Lipid Bilayer Method for Studying Channel Molecules

  • Protocol
Patch Clamp Techniques

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The planar lipid bilayer method is another way to examine channel molecules functionally at the single-molecule level. In contrast to patch-clamping, channel molecules are isolated from various biological resources and are reconstituted into an artificial membrane that has a defined lipid composition. Various techniques have been developed, from the conventional painting method to liposome-patch clamping. In this chapter, underlying principles and technical details for forming the planar lipid bilayer and methods for incorporating channel molecules into the bilayer are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller C (1986) Ion channel reconstitution. Plenum Press, New York

    Book  Google Scholar 

  2. Miller C, Racker E (1976) Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J Membr Biol 30(3):283–300

    PubMed  CAS  Google Scholar 

  3. Montal M (1987) Reconstitution of channel proteins from excitable cells in planar lipid bilayer membranes. J Membr Biol 98(2):101–115

    Article  PubMed  CAS  Google Scholar 

  4. Favre I, Sun YM, Moczydlowski E (1999) Reconstitution of native and cloned channels into planar bilayers. Methods Enzymol 294:287–304

    Article  PubMed  CAS  Google Scholar 

  5. Morera FJ, Vargas G, Gonzalez C, Rosenmann E, Latorre R (2007) Ion-channel reconstitution. Methods Mol Biol 400:571–585

    Article  PubMed  CAS  Google Scholar 

  6. Sattsangi S, Wonderlin WF (1999) Isolation of transport vesicles that deliver ion channels to the cell surface. Methods Enzymol 294:339–350

    Article  PubMed  CAS  Google Scholar 

  7. Bezanilla F (1987) Single sodium channels from the squid giant axon. Biophys J 52(6):1087–1090

    Article  PubMed  CAS  Google Scholar 

  8. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  PubMed  CAS  Google Scholar 

  9. MacKinnon R (2003) Potassium channels. FEBS Lett 555(1):62–65

    Article  PubMed  CAS  Google Scholar 

  10. LeMasurier M, Heginbotham L, Miller C (2001) KcsA: it’s a potassium channel. J Gen Physiol 118(3):303–314

    Article  PubMed  CAS  Google Scholar 

  11. Demarche S, Sugihara K, Zambelli T, Tiefenauer T, Voros J (2011) Techniques for recording reconstituted ion channels. Analyst 136:1077–1089

    Article  PubMed  CAS  Google Scholar 

  12. Hanke W, Schlue W-R (1993) Planar lipid bilayers. In: Methods and applications. Academic Press, London

    Google Scholar 

  13. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    Article  PubMed  CAS  Google Scholar 

  14. von Heijne G, Rees D (2008) Membranes: reading between the lines. Curr Opin Struct Biol 18(4):403–405

    Article  Google Scholar 

  15. Tanford C (2004) Ben Franklin stilled the waves: an informal history of pouring oil on water with reflections on the ups and downs of scientific life in genera. Oxford University Press, New York

    Google Scholar 

  16. Langmuir I (1917) The Shapes of Group Molecules Forming the Surfaces of Liquids. Proc Natl Acad Sci USA 3(4):251–257

    Article  PubMed  CAS  Google Scholar 

  17. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic, Amsterdam

    Google Scholar 

  18. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    Article  PubMed  CAS  Google Scholar 

  19. Hanai T, Haydon DA, Taylor J (1965) Polar group orientation and the electrical properties of lecithin bimolecular leaflets. J Theor Biol 9(2):278–296

    Article  PubMed  CAS  Google Scholar 

  20. Takagi M, Azuma K, Kishimoto U (1965) A new method for the formation of bilayer membranes in aqueous solution. Annu Rep Biol Works Fac Sci Osaka Univ 13

    Google Scholar 

  21. Bean RC, Shepherd WC, Chan H, Eichner J (1969) Discrete conductance fluctuations in lipid bilayer protein membranes. J Gen Physiol 53(6):741–757

    Article  PubMed  CAS  Google Scholar 

  22. Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225(5231):451–453

    Article  PubMed  CAS  Google Scholar 

  23. Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6:345–381

    Article  PubMed  CAS  Google Scholar 

  24. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799–802

    Article  PubMed  CAS  Google Scholar 

  25. Sakmann B, Neher E (1995) Single-channel recording, 2nd edn. Plenum, New York

    Book  Google Scholar 

  26. Tabata KV, Sato K, Ide T, Nishizaka T, Nakano A, Noji H (2009) Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane. EMBO J 28(21):3279–3289

    Article  PubMed  CAS  Google Scholar 

  27. Kapoor R, Kim JH, Ingolfson H, Andersen OS (2008) Preparation of artificial bilayers for electrophysiology experiments. J Vis Exp (20)

    Google Scholar 

  28. White SH (1986) The physical nature of planar bilayer membranes. In: Ion channel reconstitution. Plenum, New York

    Google Scholar 

  29. Wonderlin WF, Finkel A, French RJ (1990) Optimizing planar lipid bilayer single-channel recordings for high resolution with rapid voltage steps. Biophys J 58(2):289–297

    Article  PubMed  CAS  Google Scholar 

  30. Redwood WR, Pfeiffer FR, Weisbach JA, Thompson TE (1971) Physical properties of bilayer membranes formed from a synthetic saturated phospholipid in n-decane. Biochim Biophys Acta 233(1):1–6

    Article  PubMed  CAS  Google Scholar 

  31. Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 111(6):741–749

    Article  PubMed  CAS  Google Scholar 

  32. Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW (2003) Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta 1609(2):177–182

    Article  PubMed  CAS  Google Scholar 

  33. Zasadzinski JA, Viswanathan R, Madsen L, Garnaes J, Schwartz DK (1994) Langmuir-Blodgett films. Science 263(5154):1726–1733

    Article  PubMed  CAS  Google Scholar 

  34. Montal M, Mueller P (1972) Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci USA 69(12):3561–3566

    Article  PubMed  CAS  Google Scholar 

  35. Montal M (1973) Asymmetric lipid bilayers: response to multivalent ions. Biochim Biophys Acta 298(3):750–754

    Article  PubMed  CAS  Google Scholar 

  36. Sherwood D, Montal M (1975) Transmembrane lipid migration in planar asymmetric bilayer membranes. Biophys J 15(5):417–434

    Article  PubMed  CAS  Google Scholar 

  37. Chakrapani S, Cordero-Morales JF, Perozo E (2007) A quantitative description of KcsA gating I. macroscopic currents. J Gen Physiol 130(5):465–478

    Article  PubMed  CAS  Google Scholar 

  38. Andersen OS (1983) Ion movement through gramicidin A channels: single-channel measurements at very high potentials. Biophys J 41(2):119–133

    Article  PubMed  CAS  Google Scholar 

  39. Coronado R, Latorre R (1983) Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys J 43(2):231–236

    Article  PubMed  CAS  Google Scholar 

  40. Ehrlich BE (1992) Planar lipid bilayers on patch pipettes: bilayer formation and ion channel incorporation. Methods Enzymol 207:463–470

    Article  PubMed  CAS  Google Scholar 

  41. Suarez-Isla BA, Wan K, Lindstrom J, Montal M (1983) Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipetts. Biochemistry 22(10):2319–2323

    Article  PubMed  CAS  Google Scholar 

  42. Oiki S, Koeppe RE 2nd, Andersen OS (1995) Voltage-dependent gating of an asymmetric gramicidin channel. Proc Natl Acad Sci USA 92(6):2121–2125

    Article  PubMed  CAS  Google Scholar 

  43. Oiki S, Koeppe RE II, Andersen OS (1997) Voltage-dependent gramicidin channels. In: Towards molecular biophysics of ion channels. Elsevier, Amsterdam

    Google Scholar 

  44. Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56(3):631–636

    Article  PubMed  CAS  Google Scholar 

  45. Iwamoto M, Oiki S (2011) Counting ion and water molecules in a streaming file through the open-filter structure of a K channel. J Neurosci 31:12180–12188

    Google Scholar 

  46. Cortes DM, Cuello LG, Perozo E (2001) Molecular architecture of full-length KcsA: role of cytoplasmic domains in ion permeation and activation gating. J Gen Physiol 117(2):165–180

    Article  PubMed  CAS  Google Scholar 

  47. Niles WD, Levis RA, Cohen FS (1988) Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J 53(3):327–335

    Article  PubMed  CAS  Google Scholar 

  48. Bretscher MS, Munro S (1993) Cholesterol and the Golgi apparatus. Science 261(5126):1280–1281

    Article  PubMed  CAS  Google Scholar 

  49. Green WN, Andersen OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359

    Article  PubMed  CAS  Google Scholar 

  50. Lakshminarayanaiah N (1984) Equations of membrane biophysics. Academic, Orlando

    Google Scholar 

  51. Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471–501

    Article  PubMed  CAS  Google Scholar 

  52. Small DM (1986) The physical chemistry of lipids. From Alkanes to Phospholipids, Plenum, New York

    Google Scholar 

  53. Gruner SM, Cullis PR, Hope MJ, Tilcock CP (1985) Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem 14:211–238

    Article  PubMed  CAS  Google Scholar 

  54. Boheim G, Hanke W, Eibl H (1980) Lipid phase transition in planar bilayer membrane and its effect on carrier- and pore-mediated ion transport. Proc Natl Acad Sci USA 77(6):3403–3407

    Article  PubMed  CAS  Google Scholar 

  55. Iwamoto M, Shimizu H, Inoue F, Konno T, Sasaki YC, Oiki S (2006) Surface structure and its dynamic rearrangements of the KcsA potassium channel upon gating and tetrabutylammonium blocking. J Biol Chem 281(38):28379–28386

    Article  PubMed  CAS  Google Scholar 

  56. Williamson IM, Alvis SJ, East JM, Lee AG (2003) The potassium channel KcsA and its interaction with the lipid bilayer. Cell Mol Life Sci 60(8):1581–1590

    Article  PubMed  CAS  Google Scholar 

  57. Labarca P, Latorre R (1992) Insertion of ion channels into planar lipid bilayers by vesicle fusion. Methods Enzymol 207:447–463

    Article  PubMed  CAS  Google Scholar 

  58. Cohen FS, Niles WD (1993) Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol 220:50–68

    Article  PubMed  CAS  Google Scholar 

  59. Chernomordik LV, Kozlov MM (2008) Mechanics of membrane fusion. Nat Struct Mol Biol 15(7):675–683

    Article  PubMed  CAS  Google Scholar 

  60. Helm CA, Israelachvili JN (1993) Forces between phospholipid bilayers and relationship to membrane fusion. Methods Enzymol 220:130–143

    Article  PubMed  CAS  Google Scholar 

  61. Efremov RG, Nolde DE, Konshina AG, Syrtcev NP, Arseniev AS (2004) Peptides and proteins in membranes: what can we learn via computer simulations? Curr Med Chem 11(18):2421–2442

    Article  PubMed  CAS  Google Scholar 

  62. Chernomordik LV, Kozlov MM (2005) Membrane hemifusion: crossing a chasm in two leaps. Cell 123(3):375–382

    Article  PubMed  CAS  Google Scholar 

  63. Marrink SJ, Mark AE (2003) The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J Am Chem Soc 125(37):11144–11145

    Article  PubMed  CAS  Google Scholar 

  64. Tieleman DP, Leontiadou H, Mark AE, Marrink SJ (2003) Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 125(21):6382–6383

    Article  PubMed  CAS  Google Scholar 

  65. Woodbury DJ, Miller C (1990) Nystatin-induced liposome fusion: a versatile approach to ion channel reconstitution into planar bilayers. Biophys J 58(4):833–839

    Article  PubMed  CAS  Google Scholar 

  66. Woodbury DJ (1999) Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol 294:319–339

    Article  PubMed  CAS  Google Scholar 

  67. Singer MA (1975) Interaction of amphotericin B and nystatin with phospholipid bilayer membranes: effect of cholesterol. Can J Physiol Pharmacol 53(6):1072–1079

    Article  PubMed  CAS  Google Scholar 

  68. Finkelstein A (1987) Water Movement Through Lipid Bilayers, Pores, and Plasma membranes. In: Theory and reality. Wiley-Interscience, New Jersey

    Google Scholar 

  69. Andersen OS (1984) Gramicidin channels. Annu Rev Physiol 46:531–548

    Article  PubMed  CAS  Google Scholar 

  70. Andersen OS, Koeppe RE 2nd, Roux B (2005) Gramicidin channels. IEEE Trans Nanobiosci 4(1):10–20

    Article  Google Scholar 

  71. Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842

    Article  PubMed  Google Scholar 

  72. Sherman-Gold R (1993) The axon guide for electrophysiology and biophysics laboratory techniques. Axon, Foster City

    Google Scholar 

  73. Sigworth FJ (1995) Electronic design of patch clamp. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York

    Google Scholar 

  74. Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, Hille B, Kohler K, Kolb HA, MacRobbie E et al (1992) Electrical measurements on endomembranes. Science 258(5084):873–874

    Article  PubMed  CAS  Google Scholar 

  75. Armstrong CM, Gilly WF (1992) Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207:100–122

    Article  PubMed  CAS  Google Scholar 

  76. Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414(6859):37–42

    Article  PubMed  CAS  Google Scholar 

  77. Sigworth FJ (1985) Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys J 47(5):709–720

    Article  PubMed  CAS  Google Scholar 

  78. Sigworth FJ, Urry DW, Prasad KU (1987) Open channel noise III. High-resolution recordings show rapid current fluctuations in gramicidin A and four chemical analogues. Biophys J 52(6):1055–1064

    Article  PubMed  CAS  Google Scholar 

  79. Oiki S (2010) Single-channel structure-­function dynamics: the gating of potassium channels. In: Cell signaling reactions: single-molecular kinetic analysis. Springer, New York

    Google Scholar 

  80. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associated, Inc, MA

    Google Scholar 

  81. Shin YK, Levinthal C, Levinthal F, Hubbell WL (1993) Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science 259(5097):960–963

    Article  PubMed  CAS  Google Scholar 

  82. Menestrina G, Serra MD, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39(11):1661–1672

    Article  PubMed  CAS  Google Scholar 

  83. Iwamoto M, Shimizu H, Muramatsu I, Oiki S (2010) A cytotoxic peptide from a marine sponge exhibits ion channel activity through vectorial-insertion into the membrane. FEBS Lett 584:3995–3999

    Article  PubMed  CAS  Google Scholar 

  84. Hamada T, Matsunaga S, Yano G, Fusetani N (2005) Polytheonamides A and B, highly cytotoxic, linear polypeptides with unprecedented structural features, from the marine sponge, Theonella swinhoei. J Am Chem Soc 127(1):110–118

    Article  PubMed  CAS  Google Scholar 

  85. Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S (2008) Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132(1):67–78

    Article  PubMed  CAS  Google Scholar 

  86. Perozo E, Cortes DM, Cuello LG (1998) Three-dimensional architecture and gating mechanism of a K+ channel studied by EPR spectroscopy. Nat Struct Biol 5(6):459–469

    Article  PubMed  CAS  Google Scholar 

  87. Takeuchi K, Takahashi H, Kawano S, Shimada I (2007) Identification and characterization of the slowly exchanging pH-dependent conformational rearrangement in KcsA. J Biol Chem 282(20):15179–15186

    Article  PubMed  CAS  Google Scholar 

  88. Uysal S, Vasquez V, Tereshko V, Esaki K, Fellouse FA, Sidhu SS, Koide S, Perozo E, Kossiakoff A (2009) Crystal structure of full-length KcsA in its closed conformation. Proc Natl Acad Sci USA 106(16):6644–6649

    Article  PubMed  CAS  Google Scholar 

  89. Schrempf H, Schmidt O, Kummerlen R, Hinnah S, Muller D, Betzler M, Steinkamp T, Wagner R (1995) A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J 14(21):5170–5178

    PubMed  CAS  Google Scholar 

  90. Chill JH, Louis JM, Miller C, Bax A (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 15(4):684–698

    Article  PubMed  CAS  Google Scholar 

  91. Kelly BL, Gross A (2003) Potassium channel gating observed with site-directed mass tagging. Nat Struct Biol 10(4):280–284

    Article  PubMed  CAS  Google Scholar 

  92. Gao L, Mi X, Paajanen V, Wang K, Fan Z (2005) Activation-coupled inactivation in the bacterial potassium channel KcsA. Proc Natl Acad Sci USA 102(49):17630–17635

    Article  PubMed  CAS  Google Scholar 

  93. Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13(4):311–318

    Article  PubMed  CAS  Google Scholar 

  94. Thompson AN, Posson DJ, Parsa PV, Nimigean CM (2008) Molecular mechanism of pH sensing in KcsA potassium channels. Proc Natl Acad Sci USA 105(19):6900–6905

    Article  PubMed  CAS  Google Scholar 

  95. Cuello LG, Cortes DM, Jogini V, Sompornpisut A, Perozo E (2010) A molecular mechanism for proton-dependent gating in KcsA. FEBS Lett 584(6):1126–1132

    Article  PubMed  CAS  Google Scholar 

  96. Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between ­activation and inactivation gates in K+ channels. Nature 466(7303):272–275

    Article  PubMed  CAS  Google Scholar 

  97. Schmidt D, Cross SR, MacKinnon R (2009) A gating model for the archeal voltage-dependent K+ channel KvAP in DPhPC and POPE:POPG decane lipid bilayers. J Mol Biol 390(5):902–912

    Article  PubMed  CAS  Google Scholar 

  98. Yanagisawa M, Iwamoto M, Kato A, Yoshikawa K, Oiki S (2011) Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: Experimental verification with the potassium channel KcsA. J Am Chem Soc 133:11774–11779

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigetoshi Oiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this protocol

Cite this protocol

Oiki, S. (2012). Planar Lipid Bilayer Method for Studying Channel Molecules. In: Okada, Y. (eds) Patch Clamp Techniques. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53993-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53993-3_16

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53992-6

  • Online ISBN: 978-4-431-53993-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics