Skip to main content

Pipette Perfusion Technique

  • Protocol
Book cover Patch Clamp Techniques

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The piette perfusion technique is a version of patch-clamp techniques and provides a greater intracellular access during electrophysiological recordings. This internal perfusion technique offers the intracellular change of not only ions but also substances with higher molecular weight such as enzymes, antibodies, and metabolites. As to the other versions of techniques, it requires dedicated time and personal training. This chapter describes the tips and tricks of the unique pipette perfusion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille B (2001) Ion channels of excitable membranes, Third Edition. Sinaver Associates, 2001

    Article  PubMed  CAS  Google Scholar 

  2. Horie M, Hwang TC, Gadsby DC (1992) Pipette GTP is essential for receptor-mediated regulation of Cl current in dialysed myocytes from guinea-pig ventricle. J Physiol 455:235–246

    PubMed  CAS  Google Scholar 

  3. Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400(4):424–431

    Article  PubMed  CAS  Google Scholar 

  4. Matsuda H, Noma A (1984) Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig. J Physiol 357:553–573

    PubMed  CAS  Google Scholar 

  5. Gadsby DC, Kimura J, Noma A (1985) Voltage dependence of Na/K pump current in isolated heart cells. Nature 315(6014):63–65

    Article  PubMed  CAS  Google Scholar 

  6. Fischmeister R, Shrier A (1989) Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes. J Physiol 417:213–239

    PubMed  CAS  Google Scholar 

  7. Sato R, Noma A, Kurachi Y, Irisawa H (1985) Effects of intracellular acidification on membrane currents in ventricular cells of the guinea pig. Circ Res 57(4):553–561

    Article  PubMed  CAS  Google Scholar 

  8. Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405(3):285–293

    Article  PubMed  CAS  Google Scholar 

  9. Hartzell HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323(6085):273–275

    Article  PubMed  CAS  Google Scholar 

  10. Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407(2):182–189

    Article  PubMed  CAS  Google Scholar 

  11. Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407(2):123–128

    Article  PubMed  CAS  Google Scholar 

  12. Kameyama M, Hescheler J, Mieskes G, Trautwein W (1986) The protein-specific phosphatase 1 antagonizes the beta-adrenergic increase of the cardiac Ca current. Pflügers Arch 407(4):461–463

    Article  PubMed  CAS  Google Scholar 

  13. Kimura J, Noma A, Irisawa H (1986) Na-Ca exchange current in mammalian heart cells. Nature 319(6054):596–597

    Article  PubMed  CAS  Google Scholar 

  14. Nakao M, Gadsby DC (1986) Voltage dependence of Na translocation by the Na/K pump. Nature 323(6089):628–630

    Article  PubMed  CAS  Google Scholar 

  15. Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3′,5′-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387:453–472

    PubMed  CAS  Google Scholar 

  16. Hartzell HC, Fischmeister R (1987) Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol Pharmacol 32(5):639–645

    PubMed  CAS  Google Scholar 

  17. Hescheler J, Kameyama M, Trautwein W, Mieskes G, Soling HD (1987) Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165(2):261–266

    Article  PubMed  CAS  Google Scholar 

  18. Gisbert MP, Fischmeister R (1988) Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells. Circ Res 62(4):660–667

    Article  PubMed  CAS  Google Scholar 

  19. Hescheler J, Trautwein W (1988) Modification of L-type calcium current by intracellularly applied trypsin in guinea-pig ventricular myocytes. J Physiol 404:259–274

    PubMed  CAS  Google Scholar 

  20. Tseng GN (1988) Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium. Circ Res 63(2):468–482

    Article  PubMed  CAS  Google Scholar 

  21. White RE, Hartzell HC (1988) Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 239(4841 Pt 1):778–780

    Article  PubMed  CAS  Google Scholar 

  22. Bahinski A, Nairn AC, Greengard P, Gadsby DC (1989) Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature 340(6236):718–721

    Article  PubMed  CAS  Google Scholar 

  23. Duchatelle-Gourdon I, Hartzell HC, Lagrutta AA (1989) Modulation of the delayed rectifier potassium current in frog cardiomyocytes by beta-adrenergic agonists and magnesium. J Physiol 415:251–274

    PubMed  CAS  Google Scholar 

  24. Gadsby DC, Nakao M (1989) Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J Gen Physiol 94(3):511–537

    Article  PubMed  CAS  Google Scholar 

  25. Hagiwara N, Irisawa H (1989) Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J Physiol 409:121–141

    PubMed  CAS  Google Scholar 

  26. Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol 408:313–332

    PubMed  CAS  Google Scholar 

  27. Matsuoka S, Ehara T, Noma A (1990) Chloride-sensitive nature of the adrenaline-induced current in guinea-pig cardiac myocytes. J Physiol 425:579–598

    PubMed  CAS  Google Scholar 

  28. Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol 94(3):539–565

    Article  PubMed  CAS  Google Scholar 

  29. Ono K, Trautwein W (1991) Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 443:387–404

    PubMed  CAS  Google Scholar 

  30. Duchatelle-Gourdon I, Lagrutta AA, Hartzell HC (1991) Effects of Mg2+ on basal and beta-adrenergic-stimulated delayed rectifier potassium current in frog atrial myocytes. J Physiol 435:333–347

    PubMed  CAS  Google Scholar 

  31. Tareen FM, Ono K, Noma A, Ehara T (1991) Beta-adrenergic and muscarinic regulation of the chloride current in guinea-pig ventricular cells. J Physiol 440:225–241

    PubMed  CAS  Google Scholar 

  32. Tseng GN, Boyden PA (1991) Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am J Physiol 261(2 Pt 2):H364–H379

    PubMed  CAS  Google Scholar 

  33. Hwang TC, Horie M, Nairn AC, Gadsby DC (1992) Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance. J Gen Physiol 99(4):465–489

    Article  PubMed  CAS  Google Scholar 

  34. Ono K, Tareen FM, Yoshida A, Noma A (1992) Synergistic action of cyclic GMP on catecholamine-induced chloride current in guinea-pig ventricular cells. J Physiol 453:647–661

    PubMed  CAS  Google Scholar 

  35. Tseng GN (1992) Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol 262(4 Pt 1):C1056–C1068

    PubMed  CAS  Google Scholar 

  36. Hanf R, Li Y, Szabo G, Fischmeister R (1993) Agonist-independent effects of muscarinic antagonists on Ca2+ and K+ currents in frog and rat cardiac cells. J Physiol 461:743–765

    PubMed  CAS  Google Scholar 

  37. Hwang TC, Horie M, Gadsby DC (1993) Functionally distinct phospho-forms underlie incremental activation of protein kinase-regulated Cl conductance in mammalian heart. J Gen Physiol 101(5):629–650

    Article  PubMed  CAS  Google Scholar 

  38. Parsons TD, Hartzell HC (1993) Regulation of Ca2+ current in frog ventricular cardiomyocytes by guanosine 5′-triphosphate analogues and isoproterenol. J Gen Physiol 102(3):525–549

    Article  PubMed  CAS  Google Scholar 

  39. Oliva C, Cohen IS, Mathias RT (1988) Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys J 54(5):791–799

    Article  PubMed  CAS  Google Scholar 

  40. Tang JM, Wang J, Quandt FN, Eisenberg RS (1990) Perfusing pipettes. Pflugers Arch 416(3):347–350

    Article  PubMed  CAS  Google Scholar 

  41. Velumian AA, Zhang L, Carlen PL (1993) A simple method for internal perfusion of mammalian central nervous system neurones in brain slices with multiple solution changes. J Neurosci Methods 48(1–2):131–139

    Article  PubMed  CAS  Google Scholar 

  42. Lapointe JY, Szabo G (1987) A novel holder allowing internal perfusion of patch-clamp pipettes. Pflugers Arch 410(1–2):212–216

    Article  PubMed  CAS  Google Scholar 

  43. Byerly L, Yazejian B (1986) Intracellular ­factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol 370:631–650

    PubMed  CAS  Google Scholar 

  44. Verrecchia F, Duthe F, Duval S, Duchatelle I, Sarrouilhe D, Herve JC (1999) ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol 516(Pt 2):447–459

    Article  PubMed  CAS  Google Scholar 

  45. Alpert LA, Fozzard HA, Hanck DA, Makielski JC (1989) Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257(1 Pt 2):H79–H84

    PubMed  CAS  Google Scholar 

  46. Hattori K, Akaike N, Oomura Y, Kuraoka S (1984) Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol 246(3 Pt 1):C259–C265

    PubMed  CAS  Google Scholar 

  47. Cheng HC, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM et al (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261(3):989–992

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Horie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this protocol

Cite this protocol

Horie, M. (2012). Pipette Perfusion Technique. In: Okada, Y. (eds) Patch Clamp Techniques. Springer Protocols Handbooks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53993-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53993-3_15

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53992-6

  • Online ISBN: 978-4-431-53993-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics