Pipette Perfusion Technique

  • Minoru Horie
Part of the Springer Protocols Handbooks book series (SPH)


The piette perfusion technique is a version of patch-clamp techniques and provides a greater intracellular access during electrophysiological recordings. This internal perfusion technique offers the intracellular change of not only ions but also substances with higher molecular weight such as enzymes, antibodies, and metabolites. As to the other versions of techniques, it requires dedicated time and personal training. This chapter describes the tips and tricks of the unique pipette perfusion technique.


Pipette Solution Inlet Tube Suction Pressure Intracellular Milieu Normal Tyrode Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hille B (2001) Ion channels of excitable membranes, Third Edition. Sinaver Associates, 2001PubMedCrossRefGoogle Scholar
  2. 2.
    Horie M, Hwang TC, Gadsby DC (1992) Pipette GTP is essential for receptor-mediated regulation of Cl current in dialysed myocytes from guinea-pig ventricle. J Physiol 455:235–246PubMedGoogle Scholar
  3. 3.
    Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400(4):424–431PubMedCrossRefGoogle Scholar
  4. 4.
    Matsuda H, Noma A (1984) Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig. J Physiol 357:553–573PubMedGoogle Scholar
  5. 5.
    Gadsby DC, Kimura J, Noma A (1985) Voltage dependence of Na/K pump current in isolated heart cells. Nature 315(6014):63–65PubMedCrossRefGoogle Scholar
  6. 6.
    Fischmeister R, Shrier A (1989) Interactive effects of isoprenaline, forskolin and acetylcholine on Ca2+ current in frog ventricular myocytes. J Physiol 417:213–239PubMedGoogle Scholar
  7. 7.
    Sato R, Noma A, Kurachi Y, Irisawa H (1985) Effects of intracellular acidification on membrane currents in ventricular cells of the guinea pig. Circ Res 57(4):553–561PubMedCrossRefGoogle Scholar
  8. 8.
    Kameyama M, Hofmann F, Trautwein W (1985) On the mechanism of beta-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch 405(3):285–293PubMedCrossRefGoogle Scholar
  9. 9.
    Hartzell HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323(6085):273–275PubMedCrossRefGoogle Scholar
  10. 10.
    Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407(2):182–189PubMedCrossRefGoogle Scholar
  11. 11.
    Kameyama M, Hescheler J, Hofmann F, Trautwein W (1986) Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407(2):123–128PubMedCrossRefGoogle Scholar
  12. 12.
    Kameyama M, Hescheler J, Mieskes G, Trautwein W (1986) The protein-specific phosphatase 1 antagonizes the beta-adrenergic increase of the cardiac Ca current. Pflügers Arch 407(4):461–463PubMedCrossRefGoogle Scholar
  13. 13.
    Kimura J, Noma A, Irisawa H (1986) Na-Ca exchange current in mammalian heart cells. Nature 319(6054):596–597PubMedCrossRefGoogle Scholar
  14. 14.
    Nakao M, Gadsby DC (1986) Voltage dependence of Na translocation by the Na/K pump. Nature 323(6089):628–630PubMedCrossRefGoogle Scholar
  15. 15.
    Fischmeister R, Hartzell HC (1987) Cyclic guanosine 3′,5′-monophosphate regulates the calcium current in single cells from frog ventricle. J Physiol 387:453–472PubMedGoogle Scholar
  16. 16.
    Hartzell HC, Fischmeister R (1987) Effect of forskolin and acetylcholine on calcium current in single isolated cardiac myocytes. Mol Pharmacol 32(5):639–645PubMedGoogle Scholar
  17. 17.
    Hescheler J, Kameyama M, Trautwein W, Mieskes G, Soling HD (1987) Regulation of the cardiac calcium channel by protein phosphatases. Eur J Biochem 165(2):261–266PubMedCrossRefGoogle Scholar
  18. 18.
    Gisbert MP, Fischmeister R (1988) Atrial natriuretic factor regulates the calcium current in frog isolated cardiac cells. Circ Res 62(4):660–667PubMedCrossRefGoogle Scholar
  19. 19.
    Hescheler J, Trautwein W (1988) Modification of L-type calcium current by intracellularly applied trypsin in guinea-pig ventricular myocytes. J Physiol 404:259–274PubMedGoogle Scholar
  20. 20.
    Tseng GN (1988) Calcium current restitution in mammalian ventricular myocytes is modulated by intracellular calcium. Circ Res 63(2):468–482PubMedCrossRefGoogle Scholar
  21. 21.
    White RE, Hartzell HC (1988) Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 239(4841 Pt 1):778–780PubMedCrossRefGoogle Scholar
  22. 22.
    Bahinski A, Nairn AC, Greengard P, Gadsby DC (1989) Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature 340(6236):718–721PubMedCrossRefGoogle Scholar
  23. 23.
    Duchatelle-Gourdon I, Hartzell HC, Lagrutta AA (1989) Modulation of the delayed rectifier potassium current in frog cardiomyocytes by beta-adrenergic agonists and magnesium. J Physiol 415:251–274PubMedGoogle Scholar
  24. 24.
    Gadsby DC, Nakao M (1989) Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J Gen Physiol 94(3):511–537PubMedCrossRefGoogle Scholar
  25. 25.
    Hagiwara N, Irisawa H (1989) Modulation by intracellular Ca2+ of the hyperpolarization-activated inward current in rabbit single sino-atrial node cells. J Physiol 409:121–141PubMedGoogle Scholar
  26. 26.
    Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol 408:313–332PubMedGoogle Scholar
  27. 27.
    Matsuoka S, Ehara T, Noma A (1990) Chloride-sensitive nature of the adrenaline-induced current in guinea-pig cardiac myocytes. J Physiol 425:579–598PubMedGoogle Scholar
  28. 28.
    Nakao M, Gadsby DC (1989) [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol 94(3):539–565PubMedCrossRefGoogle Scholar
  29. 29.
    Ono K, Trautwein W (1991) Potentiation by cyclic GMP of beta-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 443:387–404PubMedGoogle Scholar
  30. 30.
    Duchatelle-Gourdon I, Lagrutta AA, Hartzell HC (1991) Effects of Mg2+ on basal and beta-adrenergic-stimulated delayed rectifier potassium current in frog atrial myocytes. J Physiol 435:333–347PubMedGoogle Scholar
  31. 31.
    Tareen FM, Ono K, Noma A, Ehara T (1991) Beta-adrenergic and muscarinic regulation of the chloride current in guinea-pig ventricular cells. J Physiol 440:225–241PubMedGoogle Scholar
  32. 32.
    Tseng GN, Boyden PA (1991) Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am J Physiol 261(2 Pt 2):H364–H379PubMedGoogle Scholar
  33. 33.
    Hwang TC, Horie M, Nairn AC, Gadsby DC (1992) Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance. J Gen Physiol 99(4):465–489PubMedCrossRefGoogle Scholar
  34. 34.
    Ono K, Tareen FM, Yoshida A, Noma A (1992) Synergistic action of cyclic GMP on catecholamine-induced chloride current in guinea-pig ventricular cells. J Physiol 453:647–661PubMedGoogle Scholar
  35. 35.
    Tseng GN (1992) Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol 262(4 Pt 1):C1056–C1068PubMedGoogle Scholar
  36. 36.
    Hanf R, Li Y, Szabo G, Fischmeister R (1993) Agonist-independent effects of muscarinic antagonists on Ca2+ and K+ currents in frog and rat cardiac cells. J Physiol 461:743–765PubMedGoogle Scholar
  37. 37.
    Hwang TC, Horie M, Gadsby DC (1993) Functionally distinct phospho-forms underlie incremental activation of protein kinase-regulated Cl conductance in mammalian heart. J Gen Physiol 101(5):629–650PubMedCrossRefGoogle Scholar
  38. 38.
    Parsons TD, Hartzell HC (1993) Regulation of Ca2+ current in frog ventricular cardiomyocytes by guanosine 5′-triphosphate analogues and isoproterenol. J Gen Physiol 102(3):525–549PubMedCrossRefGoogle Scholar
  39. 39.
    Oliva C, Cohen IS, Mathias RT (1988) Calculation of time constants for intracellular diffusion in whole cell patch clamp configuration. Biophys J 54(5):791–799PubMedCrossRefGoogle Scholar
  40. 40.
    Tang JM, Wang J, Quandt FN, Eisenberg RS (1990) Perfusing pipettes. Pflugers Arch 416(3):347–350PubMedCrossRefGoogle Scholar
  41. 41.
    Velumian AA, Zhang L, Carlen PL (1993) A simple method for internal perfusion of mammalian central nervous system neurones in brain slices with multiple solution changes. J Neurosci Methods 48(1–2):131–139PubMedCrossRefGoogle Scholar
  42. 42.
    Lapointe JY, Szabo G (1987) A novel holder allowing internal perfusion of patch-clamp pipettes. Pflugers Arch 410(1–2):212–216PubMedCrossRefGoogle Scholar
  43. 43.
    Byerly L, Yazejian B (1986) Intracellular ­factors for the maintenance of calcium currents in perfused neurones from the snail, Lymnaea stagnalis. J Physiol 370:631–650PubMedGoogle Scholar
  44. 44.
    Verrecchia F, Duthe F, Duval S, Duchatelle I, Sarrouilhe D, Herve JC (1999) ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol 516(Pt 2):447–459PubMedCrossRefGoogle Scholar
  45. 45.
    Alpert LA, Fozzard HA, Hanck DA, Makielski JC (1989) Is there a second external lidocaine binding site on mammalian cardiac cells? Am J Physiol 257(1 Pt 2):H79–H84PubMedGoogle Scholar
  46. 46.
    Hattori K, Akaike N, Oomura Y, Kuraoka S (1984) Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol 246(3 Pt 1):C259–C265PubMedGoogle Scholar
  47. 47.
    Cheng HC, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM et al (1986) A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261(3):989–992PubMedGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Cardiovascular and Respiratory MedicineShiga University of Medical SciencesOtsuJapan

Personalised recommendations