Two-Photon Targeted Patch-Clamp Recordings In Vivo

Part of the Springer Protocols Handbooks book series (SPH)


The advent of two-photon microscopy has enabled us to visualize individual neurons in the intact brain. This technique, used in combination with whole-cell patch-clamp recordings, has facilitated targeted intracellular recording from particular neurons of interest. This chapter provides a practical guide for implementing in vivo two-photon targeted patch-clamp recording and describes potential outcomes using the technique.


Target Neuron Purkinje Cell Layer Head Plate Direct Visual Control Molecular Layer Interneuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jagadeesh B, Gray CM, Ferster D (1992) Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257(5069):552–554PubMedCrossRefGoogle Scholar
  2. 2.
    Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444(4):491–498PubMedCrossRefGoogle Scholar
  3. 3.
    Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427(6976):704–710PubMedCrossRefGoogle Scholar
  4. 4.
    Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428(6985):856–860PubMedCrossRefGoogle Scholar
  5. 5.
    Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9(5):608–610PubMedCrossRefGoogle Scholar
  6. 6.
    Margrie TW, Meyer AH, Caputi A, Monyer H, Hasan MT, Schaefer AT, Denk W, Brecht M (2003) Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39(6):911–918PubMedCrossRefGoogle Scholar
  7. 7.
    Komai S, Licznerski P, Cetin A, Waters J, Denk W, Brecht M, Osten P (2006) Postsynaptic excitability is necessary for strengthening of cortical sensory responses during experience-dependent development. Nat Neurosci 9(9):1125–1133PubMedCrossRefGoogle Scholar
  8. 8.
    Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5(1):61–67. doi:nmeth1150 (pii) 10. 1038/nmeth1150 Google Scholar
  9. 9.
    Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869. doi:nprot.2009.56 (pii) 10.1038/nprot.2009.56Google Scholar
  10. 10.
    Liu BH, Li P, Li YT, Sun YJ, Yanagawa Y, Obata K, Zhang LI, Tao HW (2009) Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J Neurosci 29(34):10520–10532. doi:29/34/10520 (pii) 10.1523/J Neurosci 1915-09.2009 Google Scholar
  11. 11.
    Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293)):1307–1312. doi:nature08947 (pii) 10.1038/nature08947Google Scholar
  12. 12.
    Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at golgi cell synapses. Neuron 39(5):821–829. doi:S0896627303005300 (pii)Google Scholar
  13. 13.
    Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. doi:10.1038/nature02033 nature02033 (pii)Google Scholar
  14. 14.
    Nevian T, Helmchen F (2007) Calcium indicator loading of neurons using single-cell electroporation. Pflugers Arch 454(4):675–688PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Neurophysiology, Graduate School of MedicineThe University of TokyoTokyoJapan

Personalised recommendations