Prologue: The Ion Channel

  • Fumio Kukita
  • Shigetoshi Oiki
Part of the Springer Protocols Handbooks book series (SPH)


A historical overview describes how classic electrophysiological techniques, such as membrane potential measurement, seal formation, and the voltage clamp, have evolved into modern patch-clamp techniques. We show that old ideas from seminal papers on ion channels (i.e., gating, inactivation, ion permeation, ion selectivity) have remained as valid concepts for understanding the molecular properties of ion channels. With the currently available three-dimensional crystal structures of channel proteins, in combination with patch-clamping, novel experimental approaches that focus on the dynamic behavior of channel molecules are undergoing.


Selectivity Filter Voltage Sensor Planar Lipid Bilayer Pore Domain Electrophysiological Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hille B (2001) Ion Channels of Excitable Membranes, 3rd edn. Sinauer Associated, Inc., MAGoogle Scholar
  2. 2.
    Kukita F (2005) Progress in a study of ion channels for 50 years. Biophysics 45:10–15 (in Japanese)CrossRefGoogle Scholar
  3. 3.
    Hodgkin AL, Huxley AF (1939) Action potentials recorded from inside a nerve fibre. Nature 144:710–711CrossRefGoogle Scholar
  4. 4.
    Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108(1):37–77PubMedGoogle Scholar
  5. 5.
    Sakmann B, Neher E (1995) Single-channel recording, 2nd edn. Plenum, New YorkCrossRefGoogle Scholar
  6. 6.
    Sigworth FJ (2003) Molecular switches for “animal electricity”. A century of nature: twenty-one discoveries that changed science and the world. University of Chicago Press, ChicagoGoogle Scholar
  7. 7.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100PubMedCrossRefGoogle Scholar
  8. 8.
    Usui S (1997) Mathematical models in brain and nerve. New biophysics, vol 8. Kyoritsu Shuppan, Tokyo (in Japanese)Google Scholar
  9. 9.
    Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116(4):424–448PubMedGoogle Scholar
  10. 10.
    Kukita F (2000) Effect of water on gating of voltage-gated ion channels. Biophysics 40:185–190 (in Japanese)CrossRefGoogle Scholar
  11. 11.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544PubMedGoogle Scholar
  12. 12.
    Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496PubMedGoogle Scholar
  13. 13.
    Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116(4):449–472PubMedGoogle Scholar
  14. 14.
    Hodgkin AL, Huxley AF (1952) The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116(4):497–506PubMedGoogle Scholar
  15. 15.
    Koch C (2004) Biophysics of computation: information processing in single neurons. Computational neuroscience New Ed. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63(5):533–552PubMedCrossRefGoogle Scholar
  17. 17.
    Conti F, Stuhmer W (1989) Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur Biophys J 17(2):53–59PubMedCrossRefGoogle Scholar
  18. 18.
    Stefani E, Toro L, Perozo E, Bezanilla F (1994) Gating of Shaker K+ channels: I. Ionic and gating currents. Biophys J 66(4):996–1010PubMedCrossRefGoogle Scholar
  19. 19.
    Kukita F (2000) Solvent effects on squid sodium channels are attributable to movements of a flexible protein structure in gating currents and to hydration in a pore. J Physiol 522(Pt 3):357–373PubMedCrossRefGoogle Scholar
  20. 20.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N et al (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312(5990):121–127PubMedCrossRefGoogle Scholar
  21. 21.
    Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349(6307):305–310PubMedCrossRefGoogle Scholar
  22. 22.
    Yang N, George AL Jr, Horn R (1996) Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16(1):113–122PubMedCrossRefGoogle Scholar
  23. 23.
    Bezanilla F (2002) Voltage sensor movements. J Gen Physiol 120(4):465–473PubMedCrossRefGoogle Scholar
  24. 24.
    Shelley C, Magleby KL (2008) Linking exponential components to kinetic states in Markov models for single-channel gating. J Gen Physiol 132(2):295–312PubMedCrossRefGoogle Scholar
  25. 25.
    Colquhoun D, Hawkes AG (1995) The principles of the stochastic interpretation of ­ion-channel mechanisms. In: Sakmann B, Neher E (eds) Single-channel recording, 2nd edn. Plenum, New York, pp 397–482Google Scholar
  26. 26.
    Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62(4):375–391PubMedCrossRefGoogle Scholar
  27. 27.
    Hoshi T, Zagotta WN, Aldrich RW (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250(4980):533–538PubMedCrossRefGoogle Scholar
  28. 28.
    Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1993) Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept Channel 1(1):61–71Google Scholar
  29. 29.
    Cuello LG, Jogini V, Cortes DM, Perozo E (2010) Structural mechanism of C-type inactivation in K(+) channels. Nature 466(7303):203–208PubMedCrossRefGoogle Scholar
  30. 30.
    Schulz SG (1980) Basic principles of membrane transport. Cambridge University Press, CambridgeGoogle Scholar
  31. 31.
    Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes. Theory and reality. Wiley-Interscience, New YorkGoogle Scholar
  32. 32.
    Kuno M, Ando H, Morihata H, Sakai H, Mori H, Sawada M, Oiki S (2009) Temperature dependence of proton permeation through a voltage-gated proton channel. J Gen Physiol 134(3):191–205PubMedCrossRefGoogle Scholar
  33. 33.
    Ando H, Kuno M, Shimizu H, Muramatsu I, Oiki S (2005) Coupled K+-water flux through the HERG potassium channel measured by an osmotic pulse method. J Gen Physiol 126(5):529–538PubMedCrossRefGoogle Scholar
  34. 34.
    Iwamoto M, Oiki S (2011) Counting ion and water molecules in a streaming file through the open-filter structure of the K channel. J Neuroscience 31(34):12180–12188PubMedCrossRefGoogle Scholar
  35. 35.
    MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (1998) Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280(5360):106–109PubMedCrossRefGoogle Scholar
  36. 36.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77PubMedCrossRefGoogle Scholar
  37. 37.
    Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66(4):1061–1067PubMedCrossRefGoogle Scholar
  38. 38.
    Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore ­conformation of potassium channels. Nature 417(6888):523–526PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423(6935):33–41PubMedCrossRefGoogle Scholar
  40. 40.
    Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300(5627):1922–1926PubMedCrossRefGoogle Scholar
  41. 41.
    Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903PubMedCrossRefGoogle Scholar
  42. 42.
    Morais-Cabral JH, Zhou Y, MacKinnon R (2001) Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414(6859):37–42PubMedCrossRefGoogle Scholar
  43. 43.
    Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414(6859):43–48PubMedCrossRefGoogle Scholar
  44. 44.
    Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol 128(1):61–88PubMedGoogle Scholar
  45. 45.
    Armstrong CM (1975) Potassium pores of nerve and muscle membranes. Membranes 3:325–358PubMedGoogle Scholar
  46. 46.
    Eisenman G, Horn R (1983) Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J Membr Biol 76(3):197–225PubMedCrossRefGoogle Scholar
  47. 47.
    Lockless SW, Zhou M, MacKinnon R (2007) Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol 5(5):e121PubMedCrossRefGoogle Scholar
  48. 48.
    Thompson AN, Kim I, Panosian TD, Iverson TM, Allen TW, Nimigean CM (2009) Mechanism of potassium-channel selectivity revealed by Na+ and Li+ binding sites within the KcsA pore. Nat Struct Mol Biol 16(12):1317–1324PubMedCrossRefGoogle Scholar
  49. 49.
    Cuello LG, Jogini V, Cortes DM, Pan AC, Gagnon DG, Dalmas O, Cordero-Morales JF, Chakrapani S, Roux B, Perozo E (2010) Structural basis for the coupling between activation and inactivation gates in K+ channels. Nature 466(7303):272–275PubMedCrossRefGoogle Scholar
  50. 50.
    Schoppa NE, Sigworth FJ (1998) Activation of Shaker potassium channels. III. An activation gating model for wild-type and V2 mutant channels. J Gen Physiol 111(2):313–342PubMedCrossRefGoogle Scholar
  51. 51.
    Blunck R, McGuire H, Hyde HC, Bezanilla F (2008) Fluorescence detection of the movement of single KcsA subunits reveals cooperativity. Proc Natl Acad Sci USA 105(51):20263–20268PubMedCrossRefGoogle Scholar
  52. 52.
    Sasaki YC, Suzuki Y, Yagi N, Adachi S, Ishibashi M, Suda H, Toyota K, Yanagihara M (2000) Tracking of individual nanocrystals using diffracted x rays. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62((3 Pt B)):3843–3847PubMedCrossRefGoogle Scholar
  53. 53.
    Oiki S, Shimizu H, Iwamoto M, Konno T (2012) Single molecular gating dynamics for the KcsA potassium channel. Adv Chem Phys 146: 147–193Google Scholar
  54. 54.
    Shimizu H, Iwamoto M, Konno T, Nihei A, Sasaki YC, Oiki S (2008) Global twisting motion of single molecular KcsA potassium channel upon gating. Cell 132(1):67–78PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  1. 1.Department of Cell PhysiologyNational Institute for Physiological Sciences, National Institutes of Natural SciencesOkazakiJapan
  2. 2.Department of Molecular Physiology and Biophysics, School of MedicineUniversity of Fukui Faculty of Medical SciencesFukuiJapan

Personalised recommendations