Skip to main content

Breakpoint Mapping of Balanced Chromosomal Rearrangements Using Array CGH of Microdissection-Derived FISH Probes

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3166 Accesses

Abstract

The study of de novo balanced chromosome rearrangements associated with phenotypic alterations has provided an important tool for the understanding of pathogenic mechanisms, for they can reveal gene disruptions and their effects in patients. Because balanced rearrangements show no copy number alterations, standard array techniques are inefficient in studying these cases. For this reason, a variation of the array technique, named array painting, is required for determining the chromosome breakpoints. Using this technique, only the rearranged chromosomes, or chromosome segments including the rearranged region, are separated by microdissection, differentially labeled, and hybridized in the array CGH. The chromosome region corresponding to transition point from one hybridization fluorochrome signal to the other reveals the breakpoint. The resolution of the technique depends mainly on the array type and the density of probes as well as on the repetitiveness of the DNA sequence at the breakpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Menten B, Buysse K, Vermeulen S et al (2007) Report of a female patient with mental retardation and tall stature due to a chromosomal rearrangement disrupting the OPHN1 gene on Xq12. Eur J Med Genet 50:446–454

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moysés-Oliveira M, Guilherme RS, Meloni VA et al (2015) X-linked intellectual disability related genes disrupted by balanced X-autosome translocations. Am J Med Genet B 168:669–677

    Article  Google Scholar 

  3. Schneider A, Puechberty J, Ng BL et al (2015) Identification of disrupted AUTS2 and EPHA6 genes by array painting in a patient carrying a de novo balanced translocation t(3;7) with intellectual disability and neurodevelopment disorder. Am J Med Genet A 167:3031–3037

    Article  CAS  Google Scholar 

  4. Di Gregorio E, Bianchi FT, Schiavi A et al (2013) A de novo X;8 translocation creates a PTK2-THOC2 gene fusion with THOC2 expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. J Med Genet 50:543–551

    Article  PubMed  PubMed Central  Google Scholar 

  5. Córdova-Fletes C, Domínguez MG, Delint-Ramirez I et al (2015) A de novo t(10;19)(q22.3;q13.33) leads to ZMIZ1/PRR12 reciprocal fusion transcripts in a girl with intellectual disability and neuropsychiatric alterations. Neurogenetics 16:287–298

    Article  PubMed  Google Scholar 

  6. Fonseca AC, Bonaldi A, Bertola DR et al (2013) The clinical impact of chromosomal rearrangements with breakpoints upstream of the SOX9 gene: two novel de novo balanced translocations associated with acampomelic campomelic dysplasia. BMC Med Genet 14:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crippa M, Bestetti I, Perotti M et al (2014) New case of trichorinophalangeal syndrome-like phenotype with a de novo t(2;8)(p16.1;q23.3) translocation which does not disrupt the TRPS1 gene. BMC Med Genet 15:52

    Article  PubMed  PubMed Central  Google Scholar 

  8. Velagaleti GV, Bien-Willner GA, Northup JK et al (2005) Position effects due to chromosome breakpoints that map approximately 900 Kb upstream and approximately 1.3 Mb downstream of SOX9 in two patients with campomelic dysplasia. Am J Hum Genet 76:652–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moysés-Oliveira M, Guilherme R dos S, Dantas AG et al (2015) Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations. Fertil Steril 103:1289–1296

    Article  PubMed  Google Scholar 

  10. Gribble SM, Prigmore E, Burford DC et al (2005) The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet 42:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bugge M, Bruun-Petersen G, Brøndum-Nielsen K et al (2000) Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man. J Med Genet 37:858–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517

    Article  CAS  PubMed  Google Scholar 

  13. Alkuraya FS, Saadi I, Lund JJ et al (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

  14. Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity 108:75–85

    Article  PubMed  Google Scholar 

  16. Talkowski ME, Ernst C, Heilbut A et al (2011) Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet 88:469–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gribble SM, Kalaitzopoulos D, Burford DC et al (2007) Ultra-high resolution array painting facilitates breakpoint sequencing. J Med Genet 44:51–58

    Article  CAS  PubMed  Google Scholar 

  18. Fiegler H, Gribble SM, Burford DC et al (2003) Array painting: a method for the rapid analysis of aberrant chromosomes using DNA microarrays. J Med Genet 40:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carter NP, Ferguson-Smith MA, Perryman MT et al (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29:299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Backx L, Van Esch H, Melotte C et al (2007) Array painting using microdissected chromosomes to map chromosomal breakpoints. Cytogenet Genome Res 116:158–166

    Article  CAS  PubMed  Google Scholar 

  21. Obenauf AC, Schwarzbraun T, Auer M et al (2010) Mapping of balanced chromosome translocation breakpoints to the basepair level from microdissected chromosomes. J Cell Mol Med 14:2078–2084

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weise A, Timmermann B, Grabherr M et al (2010) High-throughput sequencing of microdissected chromosomal regions. Eur J Hum Genet 18:457–462

    Article  PubMed  Google Scholar 

  23. Sobreira NL, Gnanakkan V, Walsh M et al (2011) Characterization of complex chromosomal rearrangements by targeted capture and next-generation sequencing. Genome Res 21:1720–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shluth-Bolard C, Labalme A, Cordier MP et al (2013) Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations. J Med Genet 50:144–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Melaragno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Melaragno, M.I., Moysés-Oliveira, M. (2017). Breakpoint Mapping of Balanced Chromosomal Rearrangements Using Array CGH of Microdissection-Derived FISH Probes. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics