Skip to main content

Bar Coding Is Back

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Abstract

Chromosome bar codes (CBCs) based on locus-specific probes, i.e., bacterial artificial chromosome (BAC) clones, were popular in molecular cytogenetics for chromosome identification and characterization about 10 years ago. In the recent years, CBCs were introduced again but now meant for characterization of specific chromosomal subregions. Here we summarize a few such CBCs and highlight some points to be recognized when CBCs are set up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichter P, Tang CJ, Call K et al (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247:64–69

    Article  CAS  PubMed  Google Scholar 

  2. Lengauer C, Green ED, Cremer T (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification. Genomics 13:826–828

    Article  CAS  PubMed  Google Scholar 

  3. Liehr T, Weise A, Heller A et al (2002) Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 97:43–50

    Article  CAS  PubMed  Google Scholar 

  4. Speicher MR, Petersen S, Uhrig S et al (2000) Analysis of chromosomal alterations in non-small cell lung cancer by multiplex-FISH, comparative genomic hybridization, and multicolor bar coding. Lab Invest 80:1031–1041

    Article  CAS  PubMed  Google Scholar 

  5. Liehr T (2016) Multicolor FISH homepage. http://ssmc-tl.com/mfish.html

  6. Liechty MC, Carpio CM, Aytay S et al (1999) Hybridization-based karyotyping of mouse chromosomes: hybridization-bands. Cytogenet Cell Genet 86:34–38

    Article  CAS  PubMed  Google Scholar 

  7. Liechty MC, Clase AC, Puschus KL et al (2000) Mouse linkage cytogenetics (L-C) probes. Cytogenet Cell Genet 88:163–167

    Article  CAS  PubMed  Google Scholar 

  8. Henegariu O, Dunai J, Chen XN et al (2001) A triple color FISH technique for mouse chromosome identification. Mamm Genome 12:462–465

    Article  CAS  PubMed  Google Scholar 

  9. Courtay-Cahen C, Griffiths LA et al (2007) Extensive coloured identification of dog chromosomes to support karyotype studies: the colour code. Cytogenet Genome Res 116:198–204

    Article  CAS  PubMed  Google Scholar 

  10. Shibata F, Sahara K, Naito Y et al (2009) Reprobing multicolor fish preparations in lepidopteran chromosome. Zoolog Sci 26:187–190

    Article  CAS  PubMed  Google Scholar 

  11. Berr A, Pecinka A, Meister A et al (2006) Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J 48:771–783

    Article  CAS  PubMed  Google Scholar 

  12. Karafiátová M, Bartoš J, Kopecký D et al (2013) Mapping nonrecombining regions in barley using multicolor FISH. Chromosome Res 21:739–751

    Article  PubMed  Google Scholar 

  13. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szinay D, Chang SB, Khrustaleva L et al (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637

    Article  CAS  PubMed  Google Scholar 

  15. Tang X, Szinay D, Lang C et al (2008) Cross-species bacterial artificial chromosome-fluorescence in situ hybridization painting of the tomato and potato chromosome 6 reveals undescribed chromosomal rearrangements. Genetics 180:1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castronovo C, Valtorta E, Crippa M et al (2013) Design and validation of a pericentromeric BAC clone set aimed at improving diagnosis and phenotype prediction of supernumerary marker chromosomes. Mol Cytogenet 6:45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hamid AB, Kreskowski K, Weise A et al (2012) How to narrow down chromosomal breakpoints in small and large derivative chromosomes – a new probe set. J Appl Genet 53:259–269

    Article  CAS  PubMed  Google Scholar 

  18. Hamid AB, Pekova S, Fan X, et al. Small supernumerary marker chromosome may provide information on dosage-insensitive pericentric regions in human. Curr Genomics, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Liehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Liehr, T., Al-Rikabi, A.B.H., Weise, A. (2017). Bar Coding Is Back. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics