Skip to main content

Induced Pluripotency: Generation of iPS Cells from Mouse Embryonic Fibroblasts

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The ability to directly reprogram mammalian adult somatic cells to an undifferentiated pluripotent stage similar to that of embryonic stem cells by introduction of a reduced number of transcription factors has opened new venues in many fields of Biology and Medicine. These reprogrammed cells called iPS cells (induced pluripotent stem cells) represent a powerful tool for the study of cell differentiation and pluripotency and a promise for regenerative therapy. Here, we describe a basic procedure for reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells by expression of three transcription factors: Oct3/4, Sox2, and Klf4.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

DMEM:

Dulbecco-Modified Eagles Medium

DMSO:

Dimethyl-Sulfoxide

E12.5:

Embryonic day 12.5. The day in which a vaginal plug is detected is considered day 0.5 of embryonic development

E13.5:

Embryonic day 13.5

EGFP:

Enhanced Green Fluorescent Protein from the jellyfish Aequorea victoria. Enhanced means optimized by mutagenesis for its use in mammalian cells

ES cell:

Embryonic Stem cell

FACS:

Fluorescence Activated Cell Sorting

FCS:

Fetal calf Serum

iPS cell:

Induced Pluripotent Stem cell

KSR:

Knockout-Serum Replacement

LB:

Luria Broth

LTR:

Long Terminal Repeat

MEF:

Mouse Embryonic Fibroblast

N2 :

Nitrogen

PBS:

Phosphate Buffer Saline

PCR:

Polymerase Chain Reaction

Pen/Strep:

Penicillin/Streptomycin

RIPA:

Radio-immuno-precipitation assay

Rpm:

Revolutions per minute

RT:

Room temperature

SCNT:

Somatic Cell Nuclear Transfer

SKY:

Spectral Karyotyping

SSEA-1:

Stage-Specific Mouse Embryonic Antigen-1

WT:

Wild Type

References

  1. Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  PubMed  CAS  Google Scholar 

  2. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  PubMed  CAS  Google Scholar 

  3. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  PubMed  CAS  Google Scholar 

  4. Silva J, Smith A (2008) Capturing pluripotency. Cell 132:532–536

    Article  PubMed  CAS  Google Scholar 

  5. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–522

    Article  PubMed  CAS  Google Scholar 

  6. Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:567–582

    Article  PubMed  CAS  Google Scholar 

  7. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  PubMed  CAS  Google Scholar 

  8. Buehr M, Meek M, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  PubMed  CAS  Google Scholar 

  9. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310

    Article  PubMed  CAS  Google Scholar 

  10. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  11. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  12. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  PubMed  CAS  Google Scholar 

  13. Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  PubMed  CAS  Google Scholar 

  14. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–1067

    Article  PubMed  CAS  Google Scholar 

  15. Geoghegan E, Byrnes L (2008) Mouse induced pluripotent stem cells. Int J Dev Biol 52:1015–1022

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  17. Tokuzawa Y, Kaiho E, Maruyama M, Takahashi K, Mitsui K, Maeda M, Niwa H, Yamanaka S (2003) Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23:2699–2708

    Article  PubMed  CAS  Google Scholar 

  18. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  19. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  PubMed  CAS  Google Scholar 

  20. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  21. Cherry SR, Biniszkiewicz D, van Parjis L, Baltimore D, Jaenisch R (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20:7419–7426

    Article  PubMed  CAS  Google Scholar 

  22. Blelloch R, Venere M, Yen J, Ramalho-Santos M (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1:245–247

    Article  PubMed  CAS  Google Scholar 

  23. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25:1177–1181

    Article  PubMed  CAS  Google Scholar 

  24. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Article  PubMed  CAS  Google Scholar 

  25. Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12

    Article  PubMed  CAS  Google Scholar 

  26. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154

    Article  PubMed  CAS  Google Scholar 

  27. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  28. Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  PubMed  CAS  Google Scholar 

  29. Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernández-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  PubMed  CAS  Google Scholar 

  30. Hong H, Takahashi K, Ichisaka Y, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  PubMed  CAS  Google Scholar 

  31. Kawamura T, Suzuki J, Wang YV, Menéndez S, Morera LB, Raya A, Wahl GM, Izpisúa-Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  PubMed  CAS  Google Scholar 

  32. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  PubMed  CAS  Google Scholar 

  33. Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H (2003) Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31:1007–1014

    PubMed  CAS  Google Scholar 

  34. Naviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70:5701–5705

    PubMed  CAS  Google Scholar 

  35. Fulwyler MJ (1980) Flow cytometry and cell sorting. Blood 6:173–184

    CAS  Google Scholar 

  36. Schröck E, Veldman T, Padilla-Nash H, Ning Y, Spurbeck J, Jalal S, Shaffer LG, Papenhausen P, Kozma C, Phelan MC, Kjeldsen E, Schonberg SA, O’Brien P, Biesecker L, du Manoir S, Ried T (1997) Spectral karyotyping refines cytogenetic diagnostics of constitutional chromosomal abnormalities. Hum Genet 101:255–262

    Article  PubMed  Google Scholar 

  37. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  38. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Carmen Gómez, Marta Riffo, Jaime Muñoz, Maribel Muñoz and Rosa Serrano for their excellent assistance with tissue culture and mouse work, and Marta Cañamero for the histological analysis of teratomas. We also thank the Animal Facility and Comparative Pathology Units at the CNIO for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagrario Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Li, H. et al. (2011). Induced Pluripotency: Generation of iPS Cells from Mouse Embryonic Fibroblasts. In: Pease, S., Saunders, T. (eds) Advanced Protocols for Animal Transgenesis. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20792-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20792-1_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20791-4

  • Online ISBN: 978-3-642-20792-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics