Skip to main content

Generation of Stably Transfected Eukaryotic Cell Lines Producing ImmunoRNAse Fusion Proteins

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2604 Accesses

Abstract

ImmunoRNases represent a highly attractive alternative to conventional immunotoxins for cancer therapy. Quantitative production of immunoRNases in appropriate expression systems, however, remains a major challenge for further clinical development of these novel compounds. Here we describe a method for high-level production and purification of a fully functional immunoRNase fusion protein from supernatants of stably transfected mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrowicz J (1958) Intracutaneous ribonuclease in chronic myelocytic leukemia. Lancet 2:420

    Article  Google Scholar 

  • Amlot PL, Stone MJ, Cunningham D, Fay J, Newman J, Collins R, May R, McCarthy M, Richardson J, Ghetie V (1993) A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 82:2624–2633

    PubMed  CAS  Google Scholar 

  • Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175

    Article  CAS  Google Scholar 

  • Bravo J, Fernandez E, Ribo M, de Llorens R, Cuchillo CM (1994) A versatile negative-staining ribonuclease zymogram. Anal Biochem 219:82–86

    Article  PubMed  CAS  Google Scholar 

  • Cesano A, Gayko U (2003) CD22 as a target of passive immunotherapy. Semin Oncol 30:253–257

    Article  PubMed  CAS  Google Scholar 

  • Glukhov BN, Jerusalimsky AP, Canter VM, Salganik RI (1976) Ribonuclease treatment of tick-borne encephalitis. Arch Neurol 33:598–603

    Article  PubMed  CAS  Google Scholar 

  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  • Korn K, Foerster HH, Hahn U (2000) Phage display of RNase A and an improved method for purification of phages displaying RNases. Biol Chem 381:179–181

    PubMed  CAS  Google Scholar 

  • Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  PubMed  CAS  Google Scholar 

  • Krauss J, Arndt MA, Vu BK, Newton DL, Rybak SM (2005) Targeting malignant B-cell lymphoma with a humanized anti-CD22 scFv-angiogenin immunoenzyme. Br J Haematol 128:602–609

    Article  PubMed  CAS  Google Scholar 

  • Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, FitzGerald DJ, Pastan I (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241–247

    Article  PubMed  CAS  Google Scholar 

  • Mikulski SM, Costanzi JJ, Vogelzang NJ, McCachren S, Taub RN, Chun H, Mittelman A, Panella T, Puccio C, Fine R, Shogen K (2002) Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol 20:274–281

    Article  PubMed  CAS  Google Scholar 

  • Newton DL, Xue Y, Olson KA, Fett JW, Rybak SM (1996) Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains. Biochemistry 35:545–553

    Article  PubMed  CAS  Google Scholar 

  • Rybak SM, Newton DL (2001) Antibody targeted therapeutics for lymphoma: new focus on the CD22 antigen and RNA. Expert Opin Biol Ther 1:995–1003

    Article  Google Scholar 

  • Rybak SM, Hoogenboom HR, Meade HM, Raus JC, Schwartz D, Youle RJ (1992) Humanization of immunotoxins. Proc Natl Acad Sci USA 89:3165–3169

    Article  PubMed  CAS  Google Scholar 

  • Sausville EA, Headlee D, Stetler-Stevenson M, Jaffe ES, Solomon D, Figg WD, Herdt J, Kopp WC, Rager H, Steinberg SM (1995) Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 85:3457–3465

    PubMed  CAS  Google Scholar 

  • Saxena SK, Rybak SM, Winkler G, Meade HM, McGray P, Youle RJ, Ackerman EJ (1991) Comparison of RNases and toxins upon injection into Xenopus oocytes. J Biol Chem 266:21208–21214

    PubMed  CAS  Google Scholar 

  • Saxena SK, Rybak SM, Davey RT Jr, Youle RJ, Ackerman EJ (1992) Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 267:21982–21986

    PubMed  CAS  Google Scholar 

  • Senderowicz AM, Vitetta E, Headlee D, Ghetie V, Uhr JW, Figg WD, Lush RM, Stetler-Stevenson M, Kershaw G, Kingma DW, Jaffe ES, Sausville EA (1997) Complete sustained response of a refractory, post-transplantation, large B-cell lymphoma to an anti-CD22 immunotoxin. Ann Intern Med 126:882–885

    PubMed  CAS  Google Scholar 

  • St. Clair DK, Rybak SM, Riordan JF, Vallee BL (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci USA 84:8330–8334

    Article  PubMed  CAS  Google Scholar 

  • Stocker M, Tur MK, Sasse S, Krussmann A, Barth S, Engert A (2003) Secretion of functional anti-CD30-angiogenin immunotoxins into the supernatant of transfected 293T-cells. Protein Expr Purif 28:211–219

    Article  PubMed  CAS  Google Scholar 

  • Vitetta ES, Stone M, Amlot P, Fay J, May R, Till M, Newman J, Clark P, Collins R, Cunningham D et al (1991) Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res 51:4052–4058

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela A. E. Arndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Mavratzas, A., Exner, E., Krauss, J., Arndt, M.A.E. (2010). Generation of Stably Transfected Eukaryotic Cell Lines Producing ImmunoRNAse Fusion Proteins. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01147-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01147-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01146-7

  • Online ISBN: 978-3-642-01147-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics