Skip to main content

Imaging Tumor Xenografts Using Radiolabeled Antibodies

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2600 Accesses

Abstract

Non-invasive, molecular imaging of malignancies using radiolabeled antibodies as tracers is an emerging field that can offer information on staging and response to therapy. Protein engineering approaches enable fully human antibodies to be generated against any novel target and reformatted for optimal properties for positron emission tomography imaging (immunoPET). This chapter describes the steps required for imaging tumor xenografts in vivo in preclinical models with engineered antibody fragments. Two radiolabeling approaches, iodination and radiometal labeling, are described in detail including the conjugation of the radiometal chelator, DOTA, to the protein. Protocols for the assessment of the biological function of the protein after radiolabeling as well as establishment of tumor xenografts have also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CJ, Connett JM, Schwarz SW, Rocque PA, Guo LW, Philpott GW, Zinn KR, Meares CF, Welch MJ (1992) Copper-64-labeled antibodies for PET imaging. J Nucl Med 33:1685–1691

    PubMed  CAS  Google Scholar 

  • Begent RH, Verhaar MJ, Chester KA, Casey JL, Green AJ, Napier MP, Hope-Stone LD, Cushen N, Keep PA, Johnson CJ, Hawkins RE, Hilson AJ, Robson L (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2:979–984

    Article  PubMed  CAS  Google Scholar 

  • Birchler MT, Thuerl C, Schmid D, Neri D, Waibel R, Schubiger A, Stoeckli SJ, Schmid S, Goerres GW (2007) Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 136:543–548

    Article  PubMed  Google Scholar 

  • Borjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, Castelijns JA, Vosjan MJ, Kummer JA, Leemans CR, Lammertsma AA, van Dongen GA (2006) Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 12:2133–2140

    Article  PubMed  Google Scholar 

  • Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, Chen X (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    PubMed  CAS  Google Scholar 

  • Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, Pierre C, Nagel A, Pryma DA, Humm J, Larson SM, Old LJ, Russo P (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8:304–310

    Article  PubMed  CAS  Google Scholar 

  • Garg PK, Garg S, Zalutsky MR (1991) Fluorine-18 labeling of monoclonal antibodies and fragments with preservation of immunoreactivity. Bioconjug Chem 2:44–49

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Trotter DE, Manjeshwar RM, Doss M, Shaller C, Robinson MK, Tandon R, Adams GP, Adler LP (2004) Quantitation of small-animal (124)I activity distributions using a clinical PET/CT scanner. J Nucl Med 45:1237–1244

    PubMed  Google Scholar 

  • Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M, Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    Article  PubMed  CAS  Google Scholar 

  • Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lambrecht RM, Graham MC, Di Resta G, Bendriem B, Daghighian F et al (1992) PET scanning of iodine-124–3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 33:2020–2023

    PubMed  CAS  Google Scholar 

  • Larson SM, El-Shirbiny AM, Divgi CR, Sgouros G, Finn RD, Tschmelitsch J, Picon A, Whitlow M, Schlom J, Zhang J, Cohen AM (1997) Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer 80:2458–2468

    Article  PubMed  CAS  Google Scholar 

  • Lewis MR, Raubitschek A, Shively JE (1994) A facile, water-soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. Bioconjug Chem 5:565–576

    Article  PubMed  CAS  Google Scholar 

  • Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  • Mayer A, Tsiompanou E, O'Malley D, Boxer GM, Bhatia J, Flynn AA, Chester KA, Davidson BR, Lewis AA, Winslet MC, Dhillon AP, Hilson AJ, Begent RH (2000) Radioimmunoguided surgery in colorectal cancer using a genetically engineered anti-CEA single-chain Fv antibody. Clin Cancer Res 6:1711–1719

    PubMed  CAS  Google Scholar 

  • Meares CF, McCall MJ, Reardan DT, Goodwin DA, Diamanti CI, McTigue M (1984) Conjugation of antibodies with bifunctional chelating agents: isothiocyanate and bromoacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal Biochem 142:68–78

    Article  PubMed  CAS  Google Scholar 

  • Olafsen T, Kenanova VE, Wu AE (2006) Tunable pharmacokinetics: Modifying the in vivo half life of antibodies by directed mutagenesis of the Fc fragment. Nature Protocols 1:2048–2060

    Article  PubMed  CAS  Google Scholar 

  • Otsuka FL, Welch MJ, Kilbourn MR, Dence CS, Dilley WG, Wells SA Jr (1991) Antibody fragments labeled with fluorine-18 and gallium-68: in vivo comparison with indium-111 and iodine-125-labeled fragments. Int J Rad Appl Instrum 18:813–816

    Article  CAS  Google Scholar 

  • Parry R, Schneider D, Hudson D, Parkes D, Xuan JA, Newton A, Toy P, Lin R, Harkins R, Alicke B, Biroc S, Kretschmer PJ, Halks-Miller M, Klocker H, Zhu Y, Larsen B, Cobb RR, Bringmann P, Roth G, Lewis JS, Dinter H, Parry G (2005) Identification of a novel prostate tumor target, mindin/RG-1, for antibody-based radiotherapy of prostate cancer. Cancer Res 65:8397–8405

    Article  PubMed  CAS  Google Scholar 

  • Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, Huijgens PC, van Dongen GA (2006) Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90) Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn KR, Meares CF, Cutler PD, Welch MJ, Siegel BA (1995) RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 36:1818–1824

    PubMed  CAS  Google Scholar 

  • Ping Li W, Meyer LA, Capretto DA, Sherman CD, Anderson CJ (2008) Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother Radiopharm 23:158–171

    Article  PubMed  Google Scholar 

  • Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    PubMed  CAS  Google Scholar 

  • Stout DB, Chatziioannou AF, Lawson TP, Silverman RW, Gambhir SS, Phelps ME (2005) Small animal imaging center design: the facility at the UCLA Crump Institute for molecular imaging. Mol Imaging Biol 7:393–402

    Article  PubMed  Google Scholar 

  • Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, Williams LE, Chatziioannou AF, Gambhir SS, Wu AM (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44:1962–1969

    PubMed  CAS  Google Scholar 

  • Tsai SW, Sun Y, Williams LE, Raubitschek AA, Wu AM, Shively JE (2000) Biodistribution and radioimmunotherapy of human breast cancer xenografts with radiometal-labeled DOTA conjugated anti-HER2/neu antibody 4D5. Bioconjug Chem 11:327–334

    Article  PubMed  CAS  Google Scholar 

  • Wilson CB, Snook DE, Dhokia B, Taylor CV, Watson IA, Lammertsma AA, Lambrecht R, Waxman J, Jones T, Epenetos AA (1991) Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124iodine in patients with breast cancer. Int J Cancer 47:344–347

    Article  PubMed  CAS  Google Scholar 

  • Wong JY, Chu DZ, Williams LE, Yamauchi DM, Ikle DN, Kwok CS, Liu A, Wilczynski S, Colcher D, Yazaki PJ, Shively JE, Wu AM, Raubitschek AA (2004) Pilot trial evaluating an 123I-labeled 80-kilodalton engineered anticarcinoembryonic antigen antibody fragment (cT84.66 minibody) in patients with colorectal cancer. Clin Cancer Res 10:5014–5021

    Article  PubMed  CAS  Google Scholar 

  • Wu AM (2009) Antibodies and antimatter: The resurgence of immunoPET. J Nucl Med 50:2–5

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Olafsen T (2008) Antibodies for molecular imaging of cancer. Cancer J (Sudbury, MA) 14:191–197

    Article  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Yazaki PJ, Tsai S, Nguyen K, Anderson AL, McCarthy DW, Welch MJ, Shively JE, Williams LE, Raubitschek AA, Wong JY, Toyokuni T, Phelps ME, Gambhir SS (2000) High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci USA 97:8495–8500

    Article  PubMed  CAS  Google Scholar 

  • Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, Shively JE, Raubitschek AA (2001) Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 12:220–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tove Olafsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Olafsen, T., Kenanova, V.E., Wu, A.M. (2010). Imaging Tumor Xenografts Using Radiolabeled Antibodies. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01147-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01147-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01146-7

  • Online ISBN: 978-3-642-01147-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics