Skip to main content

Targeted Polymeric Nanoparticles

  • Protocol
Antibody Engineering

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2614 Accesses

Abstract

Hybrid sub-micrometer particles are of great interest and have been extensively applied to tailor the catalytic, electrical, optical, magnetic, mechanical or thermal properties of the material. Especially their application in the field of diagnostics and drug delivery systems is a rapidly advancing research area. They can serve as carriers for biomolecules like peptides or proteins and be applied for drug targeting, controlled drug release, immunoassays and immunodiagnostics. In the recent years, it has been shown that the miniemulsion is a very suitable technique to obtain hybrid polymeric particles in the size range tuneable from 50-500 nm. In this chapter, we are presenting several experimental procedures for the formulation of well-defined carboxyl- and amine-functionalized nanoparticles from the monomers (via radical polymerization) or preformed polymers (via solvent evaporation technique). Introduction of the fluorescent dye or/and magnetite into the reaction mixture leads to the formation of fluorescent nanoparticles with magnetic properties. The obtained particles were characterized in terms of their size, size distribution and amount of surface functional groups. Furthermore, the binding of targeting molecules to the carboxyl and amine groups is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allemann E, Leroux JC, Gurny R (1998) Polymeric nano- and microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 34:171–189

    Article  PubMed  CAS  Google Scholar 

  • Davda J, Labhasetwar V (2002) Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 233:51–59

    Article  PubMed  CAS  Google Scholar 

  • Delie F, Blanco-Priíeto MJ (2005) Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules 10:65–80

    Article  PubMed  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the GUT-associated lyphoid-tissues. 1. Orally-administered biodegradable microspheres target the peyers patches. J Control Release 11:205–214

    Article  CAS  Google Scholar 

  • Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann D, Landfester K, Antonietti M (2001) Encapsulation of magnetite in polymer particles via the miniemulsion polymerization process. Magnetohydrodynamics 37:217–221

    Google Scholar 

  • Holzapfel V, Musyanovych A, Landfester K, Lorenz MR, Mailänder V (2005) Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol Chem Phys 206:2440–2449

    Article  CAS  Google Scholar 

  • Holzapfel V, Lorenz M, Weiss CK, Schrezenmeier H, Landfester K, Mailander V (2006) J Phys Condens Matter 18:2581

    Article  Google Scholar 

  • Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res 36:231–279

    Article  CAS  Google Scholar 

  • Matuszewski L, Persigehl T, Wall A, Sehwindt W, Tombach B, Fobker M, Poremba C, Ebert W, Heindel W, Bremer C (2005) Cell tagging with clinically approved iron oxides: Feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161

    Article  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  PubMed  CAS  Google Scholar 

  • Musyanovych A, Adler H-JP (2005) Grafting of amino functional monomer onto initiator-modified polystyrene particles. Langmuir 21:2209–2217

    Article  PubMed  CAS  Google Scholar 

  • Musyanovych A, Rossmanith R, Tontsch C, Landfester K (2007) Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl-and amino-functionalized polystyrene particles prepared by miniemulsion polymerization. Langmuir 23:5367–5376

    Article  PubMed  CAS  Google Scholar 

  • Musyanovych A, Schmitz-Wienke J, Mailänder V, Walther P, Landfester K (2008) Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci 8:127–139

    Article  PubMed  CAS  Google Scholar 

  • Musyanovych A, Landfester K, Mailänder V (2009) Polymeric nanoparticles as carrier systems: how does the material and surface charge affect cellular uptake? In: Mitchem BH, Sharnham CL (eds) Clinical chemistry research. Nova Science Publisher, Inc

    Google Scholar 

  • Nobs L, Buchegger F, Gurny R, Allémann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17:139–145

    Article  PubMed  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    Article  PubMed  CAS  Google Scholar 

  • Pietzonka P, Rothen-Rutishauser B, Langguth P, Wunderli-Allenspach H, Walter E, Merkle HP (2002) Transfer of lipophilic markers from PLGA and polystyrene nanoparticles to Caco-2 monolayers mimics particle uptake. Pharm Res 19:595–601

    Article  PubMed  CAS  Google Scholar 

  • Ramirez LP, Landfester K (2003) Magnetic polystyrene nanoparticles with a high magnetite content obtained by miniemulsion processes. Macromol Chem Phys 204:22–31

    Article  CAS  Google Scholar 

  • Urban M, Musyanovych A, Landfester K (2009) Fluorescent superparamagnetic polylactide nanoparticles by combination of miniemulsion and emulsion/solvent evaporation techniques. Macromol Chem Phys 210:961–970

    Article  CAS  Google Scholar 

  • Win KY, Feng S-S (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713–2722

    Article  PubMed  CAS  Google Scholar 

  • Xia A, Hu JH, Wang CC, Jiang DL (2007) Small 3:1811

    Article  PubMed  CAS  Google Scholar 

  • Zauner W, Farrow NA, Haines AMR (2001) In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 71:39–51

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Musyanovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Landfester, K., Musyanovych, A. (2010). Targeted Polymeric Nanoparticles. In: Kontermann, R., Dübel, S. (eds) Antibody Engineering. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01147-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01147-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01146-7

  • Online ISBN: 978-3-642-01147-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics