Skip to main content

Plastid Transformation in Nicotiana tabacum and Nicotiana sylvestris by Biolistic DNA Delivery to Leaves

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

Abstract

The protocol we report here is based on biolistic delivery of the transforming DNA to tobacco leaves, selection of transplastomic clones by spectinomycin resistance and regeneration of plants with uniformly transformed plastid genomes. Because the plastid genome of Nicotiana tabacum derives from Nicotiana sylvestris, and the two genomes are highly conserved, vectors developed for N. tabacum can be used in N. sylvestris. Also, the tissue culture responses of N. tabacum cv. Petit Havana and N. sylvestris accession TW137 are similar, allowing plastid engineering protocols developed for N. tabacum to be directly applied to N. sylvestris. However, the tissue culture protocol is applicable only in a subset of N. tabacum cultivars. Here we highlight differences between the protocols for the two species. We describe updated vectors targeting insertions in the unique and repeated regions of the plastid genome as well as systems for marker excision. The simpler genetics of the diploid N. sylvestris, as opposed to the allotetraploid N. tabacum, make it an attractive model for plastid transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng B-Y, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  CAS  PubMed  Google Scholar 

  3. Lutz KA, Maliga P (2008) Plastid genomes in a regenerating tobacco shoot derive from a small number of copies selected through a stochastic process. Plant J 56:975–983

    Article  CAS  PubMed  Google Scholar 

  4. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Lutz KA, Svab Z, Maliga P (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat Protoc 1:900–910

    Article  CAS  PubMed  Google Scholar 

  6. Lutz KA, Maliga P (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol 424:501–518

    Article  CAS  PubMed  Google Scholar 

  7. Maliga P, Svab Z (2011) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In: Birchler JJ (ed) Plant chromosome engineering: methods and protocols. Springer Science + Business Media, LLC, New York, pp 37–50

    Chapter  Google Scholar 

  8. Maliga P (2012) Plastid transformation in flowering plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, New York, pp 393–414

    Chapter  Google Scholar 

  9. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  10. Koop HU, Herz S, Golds TJ, Nickelsen J (2007) The genetic transformation of plastids. In: Bock R (ed) Cell and Molecular Biology of Plastids. Springer Verlag, Berlin, Heidelberg, pp 457–510

    Chapter  Google Scholar 

  11. Day A (2012) Reverse genetics in flowering plant plastids. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer Science + Business Media, LLC, New York, pp 415–441

    Chapter  Google Scholar 

  12. Bock R (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol 312:425–438

    Article  CAS  PubMed  Google Scholar 

  13. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  14. Lutz KA, Maliga P (2007) Construction of marker-free transplastomic plants. Curr Opin Biotechnol 18:107–114

    Article  CAS  PubMed  Google Scholar 

  15. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  17. Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R (2005) Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23:1779–1783

    Article  CAS  PubMed  Google Scholar 

  18. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker to track plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  PubMed  Google Scholar 

  20. Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P (2011) Visual spectinomycin resistance gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol Biol 76:453–461

    Article  CAS  PubMed  Google Scholar 

  21. Sinagawa-Garcia SR, Tungsuchat-Huang T, Paredes-Lopez O, Maliga P (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol Biol 70:487–498

    Article  CAS  PubMed  Google Scholar 

  22. Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241:49–56

    Article  CAS  PubMed  Google Scholar 

  23. Lutz K, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  CAS  PubMed  Google Scholar 

  24. Svab Z, Maliga P (1991) Mutation proximal to the tRNA binding region of the Nicotiana plastid 16S rRNA confers resistance to spectinomycin. Mol Gen Genet 228:316–319

    Article  CAS  PubMed  Google Scholar 

  25. Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  CAS  PubMed  Google Scholar 

  26. Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18:1172–1176

    Article  CAS  PubMed  Google Scholar 

  27. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers draught tolerance. Mol Breeding 11:1–13

    Article  CAS  Google Scholar 

  28. Yu LX, Gray BN, Rutzke CJ, Walsker LP, Wilson DB, Hanson MR (2007) Expression of thermostable microbial cellulases in the chloroplast of nicotine-free tobacco. J Biotechnol 131:362–369

    Article  CAS  PubMed  Google Scholar 

  29. McCabe MS, Klaas M, Gonzalez-Rabade N, Poage M, Badillo-Corona JA, Zhou F, Karcher D, Bock R, Gray JC, Dix PJ (2008) Plastid transformation of high-biomass tobacco variety Maryland Mammoth for production of human immunodeficiency virus type 1 (HIV-1) p24 antigen. Plant Biotechnol J 6:914–929

    Article  CAS  PubMed  Google Scholar 

  30. O’Neill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants: polyethylene glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  PubMed  Google Scholar 

  31. Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable Plastid Transformation in Nicotiana benthamiana. J Plant Biol 52:244–250

    Article  CAS  Google Scholar 

  32. Murashige T, Skoog F (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  33. Sidorov V, Menczel L, Maliga P (1981) Isoleucine-requiring Nicotian plant deficient in threonine deaminase. Nature 294:87–88

    Article  CAS  Google Scholar 

  34. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Gallagher SR (ed) (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic, San Diego

    Google Scholar 

  36. Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 72:171–178

    Article  Google Scholar 

  37. Corneille S, Lutz KA, Azhagiri AK, Maliga P (2003) Identification of functional lox sites in the plastid genome. Plant J 35:753–762

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the USDA Biotechnology Risk Assessment Research Grant Program Award No. 2005-33120-16524, 2008-03012 and 2010-2716.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Maliga, P., Tungsuchat-Huang, T. (2014). Plastid Transformation in Nicotiana tabacum and Nicotiana sylvestris by Biolistic DNA Delivery to Leaves. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics