Skip to main content

Stable Plastid Transformation of Petunia

  • Protocol
  • First Online:
Chloroplast Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

Abstract

Petunia hybrida is a commercial ornamental plant and is also an important model species for genetic analysis and transgenic research. Here we describe the steps required to isolate stable plastid transformants in P. hybrida using the commercial Pink Wave cultivar. Wave cultivars are popular spreading Petunias sold as ground cover and potted plants. Transgenes introduced into P. hybrida plastids exhibit stable expression over many generations. The development of plastid transformation in P. hybrida provides an enabling technology to bring the benefits of plastid engineering, including maternal inheritance and stable expression of performance-enhancing trait genes, to the important floriculture and horticulture industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly RO, Deng ZA, Harbaugh BK (2007) Evaluation of 125 petunia cultivars as bedding plants and establishment of class standards. Horttechnology 17:386–396

    Google Scholar 

  2. Chandler SF, Lu CY (2005) Biotechnology in ornamental horticulture. In Vitro Cell Dev Biol Plant 41:591–601

    Article  Google Scholar 

  3. Conia J, Bergounioux C, Perennes C, Muller P, Brown S, Gadal P (1987) Flow cytometric analysis and sorting of plant chromosomes from Petunia hybrida protoplasts. Cytometry 8:500–508

    Article  CAS  PubMed  Google Scholar 

  4. Mishiba KI, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot 85:665–673

    Article  CAS  Google Scholar 

  5. Cornu A, Dulieu H (1988) Pollen transmission of plastid DNA under genotypic control in Petunia hybrida. Hort J Hered 79:40–44

    Google Scholar 

  6. Nagata N, Saito C, Sakai A, Kuroiwa H, Kuroiwa T (1999) The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209:53–65

    Article  CAS  PubMed  Google Scholar 

  7. Bovenberg WA, Kool AJ, Nijkamp HJJ (1981) Isolation, characterization and restriction endonuclease mapping of the Petunia hybrida chloroplast DNA. Nucleic Acids Res 9:503–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using 3 molecular data sets in the Solanaceae. Syst Biol 43:467–481

    Article  Google Scholar 

  9. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870–875

    Article  CAS  PubMed  Google Scholar 

  10. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  11. Zubko MK, Zubko EI, van Zuilen K, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523–530

    Article  CAS  Google Scholar 

  12. Kavanagh TA, Thanh ND, Lao NT, McGrath N, Peter SO, Horvath EM, Dix PJ, Medgyesy P (1999) Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events. Genetics 152:1111–1122

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Aldrich J, Cherney B, Merlin E, Palmer J (1986) Sequence of the rbcL gene for the large subunit of ribulose bisphosphate carboxylase oxygenase from Petunia. Nucleic Acids Res 14:9534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Yukawa M, Tsudzuki T, Sugiura M (2005) The 2005 version of the chloroplast DNA sequence from tobacco (Nicotiana tabacum). Plant Mol Biol Rep 23:359–365

    Article  CAS  Google Scholar 

  15. European Commission Joint Research Centre (2009) Evaluation of pollen spread of plastid located genes for the model plant Petunia hybrida under field condition. University of Rostock, Germany. In: Deliberate releases and placing on the EU marker of genetically modified organisms-GMO Register, Notification Number: B/DE/08/203. http://gmoinfo.jrc.ec.europa.eu/gmp_report.aspx?CurNot=B/DE/08/203. Accessed 8 Sept 2012

  16. Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  CAS  PubMed  Google Scholar 

  17. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  18. Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112:1503–1518

    Article  CAS  PubMed  Google Scholar 

  19. Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep 25:1369–1379

    Article  CAS  PubMed  Google Scholar 

  20. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof P. Meyer, Drs. O. Zubko (Leeds) and M. K. Zubko for their support in establishing plastid transformation in Petunia. E. M. A was the recipient of a BBSRC Ph.D. studentship and A. D. was supported by research grants (BB/E020445 and BB/I011552) from the Biotechnology and Biological Research Council (UK).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Avila, E.M., Day, A. (2014). Stable Plastid Transformation of Petunia. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics