Skip to main content

Plastid Transformation of Tobacco Suspension Cell Cultures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1132))

Abstract

Chloroplast transformation has been extremely valuable for the study of plastid biology and gene expression, but the tissue culture methodology involved can be laborious, and it can take several months to obtain homoplasmic regenerated plants useful for molecular or physiological studies. In contrast, transformation of tobacco suspension cell plastids provides an easy and efficient system to rapidly evaluate the efficacy of multiple constructs prior to plant regeneration. Suspension cell cultures can be initiated from many cell types, and once established, can be maintained by subculture for more than a year with no loss of transformation efficiency. Using antibiotic selection, homoplasmy is readily achieved in uniform cell colonies useful for comparative gene expression analyses, with the added flexibility to subsequently regenerate plants for in planta studies. Plastids from suspension cells grown in the dark are similar in size and cellular morphology to those in embryogenic culture systems of monocot species, thus providing a useful model for understanding the steps leading to plastid transformation in those recalcitrant species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci U S A 87:8526–8530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv 28:747–756

    Article  CAS  PubMed  Google Scholar 

  3. Maliga P, Bock R (2011) Plastid biotechnology: food, fuel and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Staub JM (2002) Expression of recombinant proteins via the plastid genome. In: Vinci VA, Parekh SR (eds) Handbook of industrial cell culture: mammalian, microbial and plant cells. Humana, Totowa, NJ, pp 259–278

    Chapter  Google Scholar 

  5. Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    Article  CAS  PubMed  Google Scholar 

  6. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  7. Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  CAS  PubMed  Google Scholar 

  8. Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911

    Article  CAS  PubMed  Google Scholar 

  9. Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 12:669–679

    Article  Google Scholar 

  10. Bock R, Warzecha H (2010) Solar-powered factories for new vaccines and antibiotics. Trends Biotechnol 5:246–252

    Article  Google Scholar 

  11. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910–915

    Article  CAS  PubMed  Google Scholar 

  12. Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401–410

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Sidorov V, Staub JM, Wan Y, Ye G (2008) Plastid transformation of maize. US Patent Application 20080289063A1, 2008

    Google Scholar 

  14. Nagata T, Kumagai F (1999) Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods Cell Sci 21:123–127

    Article  CAS  PubMed  Google Scholar 

  15. Langbecker CL, Ye GN, Broyles DL, Duggan LL, Xu CW, Hajdukiewicz PT, Armstrong CL, Staub JM (2004) High-frequency transformation of undeveloped plastids in tobacco suspension cells. Plant Physiol 135:39–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Michoux F, Ahmad N, McCarthy J, Nixon PJ (2010) Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor. Plant Biotechnol J 9:575–584

    Article  PubMed  Google Scholar 

  17. Chiyoda S, Linley PJ, Yamato KT, Fukuzawa H, Yokota A, Kohchi T (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Res 16:41–49

    Article  CAS  PubMed  Google Scholar 

  18. Murashige T, Skoog F (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  19. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  20. Zoubenko OV, Allison LA, Svab Z, Maliga P (1994) Efficient targeting of foreign genes into the tobacco plastid genome. Nucleic Acids Res 19:3819–3824

    Article  Google Scholar 

  21. Randolph-Anderson B, Boynton JE, Dawson J, Dunder E, Eskes R, Gillham NW, Johnson A, Perlman PS, Suttie J, Heiser WC (1995) Sub-micron gold particles are superior to larger particles for efficient biolistic transformation of organelles and some cell types. Bio-Rad Technical Bulletin 2015

    Google Scholar 

  22. Suzuki T, Kawano S, Sakai A, Fujie M, Kuroiwa H, Nakamura H, Kuroiwa T (1992) Preferential mitochondrial and plastid DNA synthesis before multiple cell divisions in Nicotiana tabacum. J Cell Sci 130:831–837

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Staub, J.M. (2014). Plastid Transformation of Tobacco Suspension Cell Cultures. In: Maliga, P. (eds) Chloroplast Biotechnology. Methods in Molecular Biology, vol 1132. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-995-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-995-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-994-9

  • Online ISBN: 978-1-62703-995-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics