Skip to main content

Fc Engineering of Antibodies and Antibody Derivatives by Primary Sequence Alteration and Their Functional Characterization

  • Protocol
  • First Online:
  • 9752 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1131))

Abstract

Therapeutic antibodies used in the treatment of cancer patients are able to mediate diverse effector mechanisms. Dependent on tumor entity, localization, and tumor burden different effector mechanisms may contribute to the in vivo antitumor activity to a variable degree. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) have been suggested as being important for the in vivo activity of therapeutic antibodies like rituximab or trastuzumab. In recent years, several strategies have been pursued to further optimize the cytotoxic potential of monoclonal antibodies by modifying their Fc part (Fc engineering) with the ultimate goal to enhance antibody therapy.

Since Fc engineering approaches are applicable to any Fc-containing molecule, strategies to enhance CDC or ADCC activity of full antibodies or scFv-Fc fusion proteins by altering the primary Fc sequence are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512

    Article  CAS  PubMed  Google Scholar 

  2. Musolino A et al (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26(11):1789–1796

    Article  CAS  PubMed  Google Scholar 

  3. Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21(21):3940–3947

    Article  CAS  PubMed  Google Scholar 

  4. Carter PJ (2006) Potent antibody therapeutics by design. Nat Rev Immunol 6:343–357

    Article  CAS  PubMed  Google Scholar 

  5. Desjarlais JR et al (2007) Optimizing engagement of the immune system by anti-tumor antibodies: an engineer’s perspective. Drug Discov Today 12(21–22):898–910

    Article  CAS  PubMed  Google Scholar 

  6. Jefferis R, Lund J, Goodall M (1995) Recognition sites on human IgG for Fc gamma receptors: the role of glycosylation. Immunol Lett 44(2–3):111–117

    Article  CAS  PubMed  Google Scholar 

  7. Lund J et al (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J Immunol 157(11):4963–4969

    CAS  PubMed  Google Scholar 

  8. Jefferis R (2009) Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 30(7):356–362

    Article  CAS  PubMed  Google Scholar 

  9. Shields RL et al (2001) High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem 276(9):6591–6604

    Article  CAS  PubMed  Google Scholar 

  10. Lazar GA et al (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A 103(11):4005–4010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Presta LG et al (2002) Engineering therapeutic antibodies for improved function. Biochem Soc Trans 30(4):487–490

    Article  CAS  PubMed  Google Scholar 

  12. Stavenhagen JB et al (2007) Fc optimization of therapeutic antibodies enhances their ability to kill tumor cells in vitro and controls tumor expansion in vivo via low-affinity activating Fcgamma receptors. Cancer Res 67(18):8882–8890

    Article  CAS  PubMed  Google Scholar 

  13. Sazinsky SL et al (2008) Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci U S A 105(51):20167–20172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Idusogie EE et al (2001) Engineered antibodies with increased activity to recruit complement. J Immunol 166(4):2571–2575

    CAS  PubMed  Google Scholar 

  15. Repp R et al (2011) Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC. J Immunol Methods 373(1–2):67–78

    Article  CAS  PubMed  Google Scholar 

  16. Boel E et al (2000) Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments. J Immunol Methods 239(1–2):153–166

    Article  CAS  PubMed  Google Scholar 

  17. Derer S et al (2012) Fc engineering: design, expression, and functional characterization of antibody variants with improved effector function. Methods Mol Biol 907:519–536

    Article  CAS  PubMed  Google Scholar 

  18. Clark MR (1997) IgG effector mechanisms. Chem Immunol 65:88–110

    Article  CAS  PubMed  Google Scholar 

  19. Peipp M, van de Winkel JG, Valerius T (2011) Molecular engineering to improve antibodies’ anti-lymphoma activity. Best Pract Res Clin Haematol 24(2):217–229

    Article  CAS  PubMed  Google Scholar 

  20. Jung ST et al (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci U S A 107(2):604–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Horton HM et al (2011) Antibody-mediated coengagement of FcgammaRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J Immunol 186(7):4223–4233

    Article  CAS  PubMed  Google Scholar 

  22. Richards JO et al (2008) Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 7(8):2517–2527

    Article  CAS  PubMed  Google Scholar 

  23. Moore GL et al (2010) Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2(2):181–189

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Derer, S. et al. (2014). Fc Engineering of Antibodies and Antibody Derivatives by Primary Sequence Alteration and Their Functional Characterization. In: Ossipow, V., Fischer, N. (eds) Monoclonal Antibodies. Methods in Molecular Biology, vol 1131. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-992-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-992-5_33

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-991-8

  • Online ISBN: 978-1-62703-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics