Skip to main content

Generation of Cell Lines for Monoclonal Antibody Production

  • Protocol
  • First Online:
Book cover Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1131))

Abstract

Monoclonal antibodies (mAbs) represent the largest group of therapeutic proteins with 30 products approved in the USA and hundreds of therapies currently undergoing clinical trials. The complex nature of mAbs makes their development as therapeutic agents constrained by numerous criteria such as quality, safety, regulation, and quantity. Identification of a clonal cell line expressing high levels of mAb with adequate quality attributes and generated in compliance with regulatory standards is a necessary step prior to a program moving to large-scale production for clinical material. This chapter outlines the stable transfection technology that generates clonal cell lines for commercial manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li J, Zhu Z (2010) Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin 31:1198–1207

    Article  CAS  PubMed  Google Scholar 

  2. Reichert JM (2008) Monoclonal antibodies as innovative therapeutics. Curr Pharm Biotechnol 9:423–430

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363–372

    Article  CAS  PubMed  Google Scholar 

  4. Schirrmann T et al (2008) Production systems for recombinant antibodies. Front Biosci 13: 4576–4594

    Article  CAS  PubMed  Google Scholar 

  5. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13(2): 117–123

    Article  CAS  PubMed  Google Scholar 

  6. Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15(5): 456–462

    Article  CAS  PubMed  Google Scholar 

  7. Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341–346

    Article  CAS  PubMed  Google Scholar 

  8. Trill JJ, Shatzman AR, Ganguly S (1995) Production of monoclonal-antibodies in Cos and Cho cells. Curr Opin Biotechnol 6(5): 553–560

    Article  CAS  PubMed  Google Scholar 

  9. Kaufman RJ (2000) Overview of vector design for mammalian gene expression. Mol Biotechnol 16(2):151–160

    Article  CAS  PubMed  Google Scholar 

  10. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398

    Article  CAS  PubMed  Google Scholar 

  11. Birch JR, Mainwaring DO, Racher AJ (2008) Use of the Glutamine Synthetase (GS) expression system for the rapid development of highly productive mammalian cell processes. In: Knäblein DJ (ed) Modern biopharmaceuticals: design, development and optimization. Wiley-VCH Verlag GmbH, Weinheim, Germany

    Google Scholar 

  12. Graf LH, Chasin LA (1982) Direct demonstration of genetic alterations at the dihydrofolate-reductase locus after gamma-irradiation. Mol Cell Biol 2(1):93–96

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Urlaub G et al (1986) Effect of gamma-rays at the dihydrofolate-reductase locus—deletions and inversions. Somat Cell Mol Genet 12(6): 555–566

    Article  CAS  PubMed  Google Scholar 

  14. Jun SC et al (2005) Selection strategies for the establishment of recombinant Chinese hamster ovary cell line with dihydrofolate reductase-mediated gene amplification. Appl Microbiol Biotechnol 69(2):162–169

    Article  CAS  PubMed  Google Scholar 

  15. Bebbington CR et al (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (N Y) 10(2):169–175

    Article  CAS  Google Scholar 

  16. Kingston RE et al (2002) Amplification using CHO cell expression vectors. Curr Protoc Mol Biol chapter 16: Unit 16 23

    Google Scholar 

  17. Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  CAS  PubMed  Google Scholar 

  18. de la Cruz Edmonds MC et al (2006) Development of transfection and high-producer screening protocols for the CHOK1SV cell system. Mol Biotechnol 34(2):179–190

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Alvin, K., Ye, J. (2014). Generation of Cell Lines for Monoclonal Antibody Production. In: Ossipow, V., Fischer, N. (eds) Monoclonal Antibodies. Methods in Molecular Biology, vol 1131. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-992-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-992-5_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-991-8

  • Online ISBN: 978-1-62703-992-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics