Skip to main content

RANKL-Based Osteoclastogenic Assays from Murine Bone Marrow Cells

  • Protocol
Book cover Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

Osteoclasts are the only cell type in the body to resorb bone. Osteoclasts play a critical role in physiologic and pathologic bone remodeling. Many genetic mouse models affect the skeleton by regulating osteoclast function directly or indirectly. This protocol describes a procedure for generating osteoclasts from mouse bone marrow cells using macrophage colony stimulating factor and receptor activator of NF-κB ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen TD, Testa NG, Suda T, Schor SL, Onions D, Jarrett O, Boyde A (1981) The production of putative osteoclasts in tissue culture—ultrastructure, formation and behavior. Scan Electron Microsc:347–354

    Google Scholar 

  2. Ibbotson KJ, Roodman GD, McManus LM, Mundy GR (1984) Identification and characterization of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells. J Cell Biol 99:471–480

    Article  CAS  PubMed  Google Scholar 

  3. Roodman GD, Ibbotson KJ, MacDonald BR, Kuehl TJ, Mundy GR (1985) 1,25-Dihydroxyvitamin D3 causes formation of multinucleated cells with several osteoclast characteristics in cultures of primate marrow. Proc Natl Acad Sci U S A 82:8213–8217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  5. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS 3rd, Frankel WN et al (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem 272:25190–25194

    Article  CAS  PubMed  Google Scholar 

  6. Bradley EW, Oursler MJ (2008) Osteoclast culture and resorption assays. Methods Mol Biol 455:19–35

    Article  CAS  PubMed  Google Scholar 

  7. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K et al (2007) NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 282:18245–18253

    Article  CAS  PubMed  Google Scholar 

  8. Li P, Schwarz EM, O’Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L (2004) Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum 50:265–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the National Institutes of Health PHS awards (AR48697 and AR53586 to L.X., AR 43510 to B.F.B).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xing, L., Boyce, B.F. (2014). RANKL-Based Osteoclastogenic Assays from Murine Bone Marrow Cells. In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_23

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics