Skip to main content

Overview of Skeletal Repair (Fracture Healing and Its Assessment)

  • Protocol
Book cover Skeletal Development and Repair

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1130))

Abstract

The study of postnatal skeletal repair is of immense clinical interest. Optimal repair of skeletal tissue is necessary in all varieties of elective and reparative orthopedic surgical treatments. However, the repair of fractures is unique in this context in that fractures are one of the most common traumas that humans experience and are the end-point manifestation of osteoporosis, the most common chronic disease of aging. In the first part of this introduction the basic biology of fracture healing is presented. The second part discusses the primary methodological approaches that are used to examine repair of skeletal hard tissue and specific considerations for choosing among and implementing these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170

    Article  CAS  PubMed  Google Scholar 

  2. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355(Suppl):S7–S21

    Article  Google Scholar 

  3. Ferguson C et al (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  CAS  PubMed  Google Scholar 

  4. Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884

    Article  CAS  PubMed  Google Scholar 

  5. Vortkamp A et al (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71:65–76

    Article  CAS  PubMed  Google Scholar 

  6. Bais M et al (2009) Transcriptional analysis of fracture healing and the induction of embryonic stem cell-related genes. PLoS One 4(5):e5393

    Article  PubMed  PubMed Central  Google Scholar 

  7. Phillips AM (2005) Overview of the fracture healing cascade. Injury 36S:55–57

    Google Scholar 

  8. Buckwalter JA, Einhorn TA, Marsh JL (2001) Bone and joint healing. In: Bucholz RW, Heckman JD (eds) Rockwood and green’s fractures in adults. Lippincott Williams and Wilkins pp, Philadelphia, pp 245–271

    Google Scholar 

  9. Gerstenfeld LC et al (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18(9):1584–1592

    Article  CAS  PubMed  Google Scholar 

  10. Gardner TN et al (2000) The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture: an FEM study. J Biomech 33:415–425

    Article  CAS  PubMed  Google Scholar 

  11. Axelrad TW, Einhorn TA (2011) Use of clinical assessment tools in the evaluation of fracture healing. Injury 42(3):301–305

    Article  PubMed  Google Scholar 

  12. Bhandari M et al (2002) A lack of consensus in the assessment of fracture healing among orthopaedic surgeons. J Orthop Trauma 16(8):562–566

    Article  PubMed  Google Scholar 

  13. Goldhahn J et al (2008) Clinical evaluation of medicinal products for acceleration of fracture healing in patients with osteoporosis. Bone 43:343–347

    Article  PubMed  Google Scholar 

  14. Bouxsein ML et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486

    Article  PubMed  Google Scholar 

  15. Morgan EF et al (2009) Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44:335–344

    Article  PubMed  Google Scholar 

  16. Hayward LN et al (2012) MRT letter: Contrast-enhanced computed tomographic imaging of soft callus formation in fracture healing. Microsc Res Tech 75(1):7–14

    Article  PubMed  Google Scholar 

  17. Duvall CL et al (2004) Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol 287:H302–H310

    Article  CAS  PubMed  Google Scholar 

  18. Duvall CL et al (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22:286–297

    Article  CAS  PubMed  Google Scholar 

  19. Morgan EF et al (2012) Vascular development during distraction osteogenesis proceeds by sequential intramuscular arteriogenesis followed by intraosteal angiogenesis. Bone 51:535–545

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li W et al (2006) High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb. Circulation 113: 2445–2453

    Article  CAS  PubMed  Google Scholar 

  21. Fei J et al (2010) Imaging and quantitative assessment of long bone and vasculature. Microsc Res Tech 293:215–224

    Google Scholar 

  22. Schneider PK et al (2009) Simultaneous 3D visualization and quantification of murine bone and bone vasculature using micro-computed tomography and vascular replica. Microsc Res Tech 72:690–701

    Article  PubMed  Google Scholar 

  23. Sider KL, Song J, Davies JE (2010) A new bone vascular perfusion compound for the simultaneous analysis of bone and vasculature. Microsc Res Tech 73:665–672

    CAS  PubMed  Google Scholar 

  24. Foux A, Black RC, Uhthoff HK (1990) Quantitative measures for fracture healing: an in-vitro biomechanical study. J Biomech Eng 112:401–406

    Article  CAS  PubMed  Google Scholar 

  25. Tsiridis E et al (2007) Effects of OP-1 and PTH in a new experimental model for the study of metaphyseal bone healing. J Orthop Res 25:1193–1203

    Article  CAS  PubMed  Google Scholar 

  26. Ulrich-Vinther M, Andreassen TT (2005) Osteoprotegerin treatment impairs remodeling and apparent material properties of callus tissue without influencing structural fracture strength. Calcif Tissue Int 76:280–286

    Article  CAS  PubMed  Google Scholar 

  27. Leong PL, Morgan EF (2008) Measurement of fracture callus material properties via nanoindentation. Acta Biomater 4(5):1569–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Manjubala I (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45:185–192

    Article  CAS  PubMed  Google Scholar 

  29. Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  30. Gerstenfeld LC et al (2005) Perspective: the application of histomorphometric methods to the study of bone repair. J Bone Miner Res 20:1715–1722

    Article  PubMed  Google Scholar 

  31. Gerstenfeld LC et al (2006) Three dimensional reconstruction of fracture callus morphogenesis demonstrates asymmetry in callus development. J Histochem Cytochem 54(11):1215–1228

    Article  CAS  PubMed  Google Scholar 

  32. Hacker SA et al (1997) A methodology for the quantitative assessment of articular cartilage histomorphometry. Osteoarthritis Cartilage 5:343–355

    Article  CAS  PubMed  Google Scholar 

  33. O'Driscoll SW et al (1999) Method for automated cartilage histomorphometry. Tissue Eng 5:13–23

    Article  PubMed  Google Scholar 

  34. Kon T et al (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16(6):1004–1014

    Article  CAS  PubMed  Google Scholar 

  35. Tiyapatanaputi P et al (2004) A novel murine segmental femoral graft model. J Orthop Res 22:1254–1260

    Article  PubMed  Google Scholar 

  36. Jepsen KJ et al (2008) Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J Bone Miner Res 23(8):1204–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kakar S et al (2007) Enhanced chondrogenesis and Wnt-signaling in parathyroid hormone treated fractures. J Bone Miner Res 22(12):1903–1912

    Article  CAS  PubMed  Google Scholar 

  38. Salisbury Palomares KT et al (2010) Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. Arthritis Rheum 62(4):1108–1118

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hadjiargyrou M et al (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277(33):30177–30182

    Article  CAS  PubMed  Google Scholar 

  40. Wang K et al (2006) Analysis of fracture healing by large-scale transcriptional profile identified temporal relationships between metalloproteinase and ADAMTS mRNA expression. Matrix Biol 25(5):271–281

    Article  PubMed  Google Scholar 

  41. Rundle CH (2006) Microarray analysis of gene expression during the inflammation and endochondral bone formation stages of rat femur fracture repair. Bone 38(4):521–529

    Article  CAS  PubMed  Google Scholar 

  42. Wise JK et al (2010) Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration. PLoS One 5(10):e12987

    Article  PubMed  PubMed Central  Google Scholar 

  43. Grimes R et al (2011) The transcriptome of fracture healing defines mechanisms of coordination of skeletal and vascular development during endochondral bone formation. J Bone Miner Res 26(11):2597–2609

    Article  CAS  PubMed  Google Scholar 

  44. Matsubara H et al (2012) Vascular tissues are a primary source of BMP2 expression during bone formation induced by distraction osteogenesis. Bone 51(1):168–180

    Google Scholar 

Download references

Acknowledgments

This work is supported by NIH Grants AR056637 and AR062642.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Morgan, E.F., De Giacomo, A., Gerstenfeld, L.C. (2014). Overview of Skeletal Repair (Fracture Healing and Its Assessment). In: Hilton, M. (eds) Skeletal Development and Repair. Methods in Molecular Biology, vol 1130. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-989-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-989-5_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-988-8

  • Online ISBN: 978-1-62703-989-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics