Skip to main content

Photoactivated Localization Microscopy for Cellular Imaging

  • Protocol
  • First Online:
Book cover Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

In a method termed photoactivated localization microscopy (PALM), super-resolution fluorescence imaging can be achieved through the localization of single molecules. This allows the resolution of specific proteins fused to the appropriate fluorescent protein label. Here, we summarize fluorescent proteins suitable for PALM, the technical aspects of multicolor and three-dimensional imaging, and the software packages that are available. Additionally, we highlight several biological applications with an emphasis on neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis A, Lieberman K (1991) Near-field optical imaging with a non-evanescently excited high-brightness light source of sub-wavelength dimensions. Nature 354(6350):214–216

    Article  Google Scholar 

  2. Betzig E, Trautman JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257(5067):189–195

    Article  CAS  PubMed  Google Scholar 

  3. Page Faulk W, Malcolm Taylor G (1971) Communication to the editors. An immunocolloid method for the electron microscope. Immunochemistry 8(11):1081–1083

    Article  Google Scholar 

  4. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  5. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    Article  CAS  PubMed  Google Scholar 

  6. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hess et al (2006) Biophysical Journal 91(11):4258–4272

    Google Scholar 

  8. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Heilemann M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  11. Chmyrov et al (2013) Nature Methods 10:737–740

    Google Scholar 

  12. Shtengel G et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kanchanawong P et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lippincott-Schwartz J, Patterson GH (2009) Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19(11):555–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yildiz A et al (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    Article  CAS  PubMed  Google Scholar 

  17. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120(24):4247–4260

    Article  CAS  PubMed  Google Scholar 

  18. McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. van de Linde S, Wolter S, Heilemann M, Sauer M (2010) The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. J Biotechnol 149(4):260–266

    Article  PubMed  Google Scholar 

  20. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  PubMed  Google Scholar 

  21. Bates M, Huang B, Zhuang X (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12(5):505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shroff H et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104(51):20308–20313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Subach FV et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  PubMed  Google Scholar 

  26. Henriques R, Mhlanga MM (2009) PALM and STORM: what hides beyond the Rayleigh limit? Biotechnol J 4(6):846–857

    Article  CAS  PubMed  Google Scholar 

  27. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Biteen JS et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5(11):947–949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8):3597–3619

    Article  CAS  Google Scholar 

  30. Greenfield D et al (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol 7(6):e1000137

    Article  PubMed Central  PubMed  Google Scholar 

  31. Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11):764–774

    Article  CAS  PubMed  Google Scholar 

  32. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  CAS  PubMed  Google Scholar 

  33. Wiedenmann J et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373

    Article  CAS  PubMed  Google Scholar 

  35. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    Article  CAS  PubMed  Google Scholar 

  36. Chudakov DM et al (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439

    Article  CAS  PubMed  Google Scholar 

  37. Andresen M et al (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040

    Article  CAS  PubMed  Google Scholar 

  38. Garini Y, Young IT, McNamara G (2006) Spectral imaging: principles and applications. Cytometry A 69(8):735–747

    Article  PubMed  Google Scholar 

  39. Keshava N, Mustard JF (2002) Spectral unmixing. IEEE Signal Process Mag 19(1):44–57

    Article  Google Scholar 

  40. Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng 95:245–265

    Google Scholar 

  41. Gunewardene MS et al (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101(6):1522–1528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Piatkevich KD et al (2010) Monomeric red fluorescent proteins with a large Stokes shift. Proc Natl Acad Sci U S A 107(12):5369–5374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Gurskaya NG et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465

    Article  CAS  PubMed  Google Scholar 

  44. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Juette MF et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    Article  CAS  PubMed  Google Scholar 

  46. Pavani SRP et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Tang J, Akerboom J, Vaziri A, Looger LL, Shank CV (2010) Near-isotropic 3D optical nanoscopy with photon-limited chromophores. Proc Natl Acad Sci U S A 107(22):10068–10073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Foelling J et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  CAS  Google Scholar 

  49. Vaziri A, Tang J, Shroff H, Shank CV (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci U S A 105(51):20221–20226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8(4):327–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Manley S, Gillette JM, Lippincott-Schwartz J (2010) Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics. Methods Enzymol 475:109–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690

    Article  CAS  PubMed  Google Scholar 

  53. Wolter S et al (2010) Real-time computation of subdiffraction-resolution fluorescence images. J Microsc 237(1):12–22

    Article  CAS  PubMed  Google Scholar 

  54. Krizek P, Raska I, Hagen GM (2011) Minimizing detection errors in single molecule localization microscopy. Opt Express 19(4):3226–3235

    Article  PubMed  Google Scholar 

  55. Rogers SS, Waigh TA, Zhao X, Lu JR (2007) Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys Biol 4(3):220–227

    Article  CAS  PubMed  Google Scholar 

  56. Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5):373–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Henriques R et al (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340

    Article  CAS  PubMed  Google Scholar 

  58. Matsuda A et al (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones. PLoS One 5(9):1–12

    Article  Google Scholar 

  59. Niu L, Yu J (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95(4):2009–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    Google Scholar 

  61. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279–280

    Article  CAS  PubMed  Google Scholar 

  62. Mlodzianoski MJ et al (2011) Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express 19(16):15009–15019

    Article  PubMed  Google Scholar 

  63. Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012

  64. Blanpied TA, Kerr JM, Ehlers MD (2008) Structural plasticity with preserved topology in the postsynaptic protein network. Proc Natl Acad Sci U S A 105(34):12587–12592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Newpher TM, Ehlers MD (2009) Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol 19(5):218–227

    Article  PubMed  Google Scholar 

  66. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    Article  CAS  PubMed  Google Scholar 

  68. Dani A, Huang B, Bergan J, Dulac C, Zhuang X (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Wilt BA et al (2009) Advances in light microscopy for neuroscience. Annu Rev Neurosci 32:435–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Gaietta G et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296(5567):503–507

    Article  CAS  PubMed  Google Scholar 

  71. Shu X et al (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9(4):e1001041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Watanabe S et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1):80–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Hoze N et al (2012) Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc Natl Acad Sci U S A 109(42):17052–17057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Derkach VA, Oh MC, Guire ES, Soderling TR (2007) Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci 8(2):101–113

    Article  CAS  PubMed  Google Scholar 

  75. Kandel ER, Schwarts JH, Jessell TM (2000) Principles of neural science. McGraw-Hill Medical, New York

    Google Scholar 

  76. Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  CAS  PubMed  Google Scholar 

  77. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  78. Okamoto KI, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112

    Article  CAS  PubMed  Google Scholar 

  79. Vanharreveld A, Fifkova E (1975) Swelling of dendritic spines in fascia dentata after stimulation of perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49(3):736–749

    Article  CAS  Google Scholar 

  80. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  81. Kopec CD, Li B, Wei W, Boehm J, Malinow R (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26(7):2000–2009

    Article  CAS  PubMed  Google Scholar 

  82. Naegerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105(48):18982–18987

    Article  Google Scholar 

  83. Urban NT, Willig KI, Hell SW, Naegerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Izeddin I et al (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1):e15611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) 3-Dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3(2):383–398

    CAS  PubMed  Google Scholar 

  86. Harris KM, Jensen FE, Tsao B (1992) 3-Dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day-15 and adult ages—implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705

    CAS  PubMed  Google Scholar 

  87. Naegerl UV, Bonhoeffer T (2010) Imaging living synapses at the nanoscale by STED microscopy. J Neurosci 30(28):9341–9346

    Article  Google Scholar 

  88. Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18(23):9835–9844

    CAS  PubMed  Google Scholar 

  89. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai H (2008) The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57(5):719–729

    Article  CAS  PubMed  Google Scholar 

  90. Hotulainen P et al (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185(2):323–339

    Article  CAS  PubMed  Google Scholar 

  91. Manley S et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157

    Article  CAS  PubMed  Google Scholar 

  92. Frost NA, Shroff H, Kong H, Betzig E, Blanpied TA (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1):86–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Tatavarty V, Das S, Yu J (2012) Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 23(16):3167–3177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Tatavarty V, Kim E-J, Rodionov V, Yu J (2009) Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS One 4(11):e7724

    Article  PubMed Central  PubMed  Google Scholar 

  95. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279(5350):519–526

    Article  CAS  PubMed  Google Scholar 

  96. Morfini GA et al (2009) Axonal transport defects in neurodegenerative diseases. J Neurosci 29(41):12776–12786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Nakata T, Niwa S, Okada Y, Perez F, Hirokawa N (2011) Preferential binding of a kinesin-1 motor to GTP-tubulin-rich microtubules underlies polarized vesicle transport. J Cell Biol 194(2):245–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Achurra, P., Holden, S., Pengo, T., Manley, S. (2014). Photoactivated Localization Microscopy for Cellular Imaging. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics