Skip to main content

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

This chapter presents the foundations of Sted microscopy with a comparison to its generalization Resolft microscopy and to stochastic imaging methods (Palm, Storm, Fpalm, and alike).

The first section reviews the advantages of optical microscopy, explains the diffraction limit, and shows how the classical resolution limit was finally broken. It also reviews some of the achievements in super-resolution imaging.

The second section explains in depth the principle of Sted microscopy and highlights some special Sted modalities like the use of continuous wave lasers, time-gating, fast imaging with up to 200 frames per second, and combination with fluorescence correlation spectroscopy.

The third section treats some aspects of resolution in the presence of noise, especially in the scope of high-resolution imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ultraviolet.

  2. 2.

    Atomic Force Microscopy.

  3. 3.

    Scanning Tunneling Microscopy.

  4. 4.

    Scanning Near Field Optical Microscopy.

  5. 5.

    Tip-Enhanced Raman Spectroscopy.

  6. 6.

    Scanning Ion-Conductance Microscopy.

  7. 7.

    Green Fluorescent Protein.

  8. 8.

    Fluorescein Arsenical Helix Binder.

  9. 9.

    Based on the use of the deoxyribonucleic acid repair protein alkyl guanine DNA alkyl transferase.

  10. 10.

    Based on the use of a modified haloalkane dehalogenase.

  11. 11.

    Image Interference Microscopy.

  12. 12.

    Total Internal Reflection Fluorescence Microscopy.

  13. 13.

    Structured-Illumination Microscopy.

  14. 14.

    Incoherent Interference Illumination Microscopy.

  15. 15.

    The combination of I2M and I3M.

  16. 16.

    A combination of I5M with laterally structured illumination.

  17. 17.

    Standing Wave Fluorescence Microscopy.

  18. 18.

    Harmonic Excitation Light Microscopy.

  19. 19.

    Scanning Patterned Illumination.

  20. 20.

    Scanning Patterned Detection.

  21. 21.

    Image Scanning Microscopy.

  22. 22.

    Stimulated Emission Depletion Microscopy.

  23. 23.

    Ground State Depletion.

  24. 24.

    Reversible Saturable Optical Fluorescence Transitions.

  25. 25.

    Fluorescence Lifetime Imaging.

  26. 26.

    Continuous Wave Lasers.

  27. 27.

    Triplet Relaxation.

  28. 28.

    Dark State Relaxation.

  29. 29.

    Fluorescence Correlation Spectroscopy.

  30. 30.

    Single Plan Illumination Microscopy.

  31. 31.

    Transient Receptor Potential Channel M5.

  32. 32.

    α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor.

  33. 33.

    Ground State Depletion.

  34. 34.

    Saturated Patterned Excitation Microscopy.

  35. 35.

    Saturated Structured-Illumination Microscopy.

  36. 36.

    Photoactivation Localization Microscopy.

  37. 37.

    Stochastic Optical Reconstruction Microscopy.

  38. 38.

    Fluorescence Photoactivation Localization Microscopy.

  39. 39.

    Photoactivation Microscopy with Independently Running Acquisition.

  40. 40.

    Single-Molecule Active-Control Microscopy.

  41. 41.

    Spectral Precision Distance Microscopy/Spectral Position Determination Microscopy.

  42. 42.

    Interferometric Photoactivation Localization Microscopy.

  43. 43.

    Double Helix Photoactivation Localization Microscopy.

  44. 44.

    Direct Stochastic Optical Reconstruction Microscopy.

  45. 45.

    Ground State Depletion with Individual Molecule Return.

  46. 46.

    Single-Molecule Switching Microscopy/Single-Marker Switching Microscopy.

  47. 47.

    Full Width at Half Maximum.

  48. 48.

    Point Spread Function, describing the image of a point object.

  49. 49.

    Continuous Wave Excitation.

  50. 50.

    Gated sted microscopy.

  51. 51.

    Triplet Relaxation.

  52. 52.

    Dark State Relaxation.

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archiv für mikroskopische Anatomie 9:413–468

    Google Scholar 

  2. Lauterbach MA (2012) Finding, defining and breaking the diffraction barrier in microscopy – a historical perspective. Opt Nanoscopy 1:8

    Google Scholar 

  3. Pawley J (ed) (2006) Handbook of biological confocal microscopy. Springer, New York

    Google Scholar 

  4. Kirz J, Jacobsen C, Howells M (1995) Soft X-ray microscopes and their biological applications. Q Rev Biophys 28(1):33–130

    CAS  PubMed  Google Scholar 

  5. Miao JW, Ishikawa T, Shen Q, Earnest T (2008) Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu Rev Phys Chem 59:387–410

    CAS  PubMed  Google Scholar 

  6. Ruska E (1934) Über Fortschritte im Bau und in der Leistung des magnetischen Elektronenmikroskops. Zeitschrift für Physik 87:580–602

    Google Scholar 

  7. von Borries B, Ruska E (1939) Magnetische Sammellinse kurzer Feldlänge. Patent Nr. 680284, Deutsches Reich, Reichspatentamt

    Google Scholar 

  8. Ruska E (1993) The development of the electron microscope and of electron microscopy. In: Frängsmyr T, Ekspong G (eds) Nobel lectures, physics 1981–1990, pp. 355–380. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong

    Google Scholar 

  9. de Broglie L (1925) Recherches sur la théorie des quanta. Ann Phys 10e Série Tome 3:22–128

    Google Scholar 

  10. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    PubMed  Google Scholar 

  11. Binnig G, Rohrer H (1983) Scanning tunneling microscopy. Surf Sci 126(1–3):236–244

    CAS  Google Scholar 

  12. Synge EH (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Philos Mag 6(35):356–362

    CAS  Google Scholar 

  13. Ash EA, Nicholls G (1972) Super-resolution aperture scanning microscope. Nature 237(5357):510–512

    CAS  PubMed  Google Scholar 

  14. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy: Image recording with resolution λ/20. Appl Phys Lett 44(7):651–653

    Google Scholar 

  15. Anderson MS (2000) Locally enhanced Raman spectroscopy with an atomic force microscope. Appl Phys Lett 76(21):3130–3132

    CAS  Google Scholar 

  16. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photon 3(7):388–394

    CAS  Google Scholar 

  17. Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Metallized tip amplification of near-field Raman scattering. Opt Commun 183:333–336

    CAS  Google Scholar 

  18. Stöckle RM, Suh YD, Deckert V, Zenobi R (2000) Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett 318(1–3):131–136

    Google Scholar 

  19. Hansma PK, Drake B, Marti O, Gould SAC, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    CAS  PubMed  Google Scholar 

  20. Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5(6):383–390

    PubMed  Google Scholar 

  21. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 114(Pt 23):4153–4160

    PubMed  Google Scholar 

  22. Lazarides E, Weber K (1974) Actin antibody: The specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci USA 71(6):2268–2272

    CAS  PubMed  Google Scholar 

  23. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  24. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300(5616):87–91

    CAS  PubMed  Google Scholar 

  25. Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22(3):289–296

    CAS  PubMed  Google Scholar 

  26. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of Aequorin, a bioluminescent protein from the Luminous Hydromedusan, Aequorea. J Cell Comp Physiol 59(3):223–239

    CAS  PubMed  Google Scholar 

  27. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263(5148):802–805

    CAS  PubMed  Google Scholar 

  28. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    CAS  PubMed  Google Scholar 

  29. Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    CAS  PubMed  Google Scholar 

  30. Los GV, Zimprich C, McDougall MG, Karassina N, Learish R, Klaubert DH, Darzins A, Bulleit RF, Wood K (2005) The HaloTag (TM): a novel technology for cellular analysis. J Neurochem 94:15

    Google Scholar 

  31. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: A novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    CAS  PubMed  Google Scholar 

  32. Parak WJ, Pellegrino T, Plank C (2005) Labelling of cells with quantum dots. Nanotechnology 16(2):R9–R25

    CAS  PubMed  Google Scholar 

  33. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599):1759–1762

    CAS  PubMed  Google Scholar 

  34. Pinaud F, Michalet X, Iyer G, Margeat E, Moore H-P, Weiss S (2009) Dynamic partitioning of a Glycosyl-Phosphatidylinositol-anchored protein in Glycosphingolipid-rich microdomains imaged by single-quantum dot tracking. Traffic 10(6):691–712

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Shimomura O, Johnson FH, Saiga Y (1963) Microdetermination of calcium by aequorin luminescence. Science 140(357):1339–1340

    CAS  PubMed  Google Scholar 

  36. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry 19(11):2396–2404

    CAS  PubMed  Google Scholar 

  37. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86

    CAS  PubMed  Google Scholar 

  38. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    CAS  Google Scholar 

  39. Hell S, Schmidt R, Egner A (2009) Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nat Photon 3:381–387

    CAS  Google Scholar 

  40. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32

    Google Scholar 

  41. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Chi KR (2009) Super-resolution microscopy: breaking the limits. Nat Methods 6(1):15–18

    Google Scholar 

  43. Dedecker P, Hofkens J, Hotta JI (2008) Diffraction-unlimited optical microscopy. Mater Today 11:12–21

    Google Scholar 

  44. Lippincott-Schwartz J, Manley S (2009) Putting super-resolution fluorescence microscopy to work. Nat Methods 6(1):21–23

    Google Scholar 

  45. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    CAS  PubMed  Google Scholar 

  46. Rice JH (2007) Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution. Mol Biosyst 3(11):781–793

    CAS  PubMed  Google Scholar 

  47. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14(5):599–609

    CAS  PubMed  Google Scholar 

  48. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    CAS  PubMed  Google Scholar 

  49. Egner A, Hell SW (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15(4):207–215

    CAS  PubMed  Google Scholar 

  50. Gustafsson MGL (1999) Extended resolution fluorescence microscopy. Curr Opin Struct Biol 9(5):627–634

    CAS  PubMed  Google Scholar 

  51. Minsky M (1961) Microscopy apparatus. U.S. Patent 3013467

    Google Scholar 

  52. Hell S, Stelzer EHK (1992) Properties of a 4Pi confocal fluorescence microscope. J Opt Soc Am A Opt Image Sci Vis 9(12):2159–2166

    Google Scholar 

  53. Hell SW, Stelzer EHK, Lindek S, Cremer C (1994) Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy. Opt Lett 19(3):222–224

    CAS  PubMed  Google Scholar 

  54. Gustafsson MGL, Agard DA, Sedat JW (1995) Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. In: Proc SPIE – Three-Dimensional Microscopy: Image Acquisition and Processing II, vol 2412, pp 147–156

    Google Scholar 

  55. Gustafsson MGL, Agard DA, Sedat JW (1996) 3D widefield microscopy with two objective lenses: Experimental verification of improved axial resolution. In: Proc SPIE – Three-Dimensional Microscopy: Image Acquisition and Processing III, vol 2655, pp 62–66

    Google Scholar 

  56. Axelrod D (1981) Cell-substrate contacts illuminated by total internal-reflection fluorescence. J Cell Biol 89(1):141–145

    CAS  PubMed  Google Scholar 

  57. Temple PA (1981) Total internal-reflection microscopy: A surface inspection technique. Appl Opt 20(15):2656–2664

    CAS  PubMed  Google Scholar 

  58. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Uspekhi 10(4):509–514

    Google Scholar 

  59. Veselago VG (1967) Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities. Sov Phys Solid State 8(12):2854–2856

    Google Scholar 

  60. Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969

    CAS  PubMed  Google Scholar 

  61. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686–1686

    CAS  PubMed  Google Scholar 

  62. Cragg GE, So PTC (2000) Lateral resolution enhancement with standing evanescent waves. Opt Lett 25(1):46–48

    CAS  PubMed  Google Scholar 

  63. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–U36

    Google Scholar 

  64. Gustafsson MGL, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16

    CAS  PubMed  Google Scholar 

  65. Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MGL (2008) I5S: Wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94(12):4971–4983

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Bailey B, Farkas DL, Taylor DL, Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366(6450):44–48

    CAS  PubMed  Google Scholar 

  67. Frohn JT, Knapp HF, Stemmer A (2000) True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proc Natl Acad Sci USA 97(13):7232–7236

    CAS  PubMed  Google Scholar 

  68. Lu J, Min W, Conchello J-A, Xie XS, Lichtman JW (2009) Super-resolution laser scanning microscopy through spatiotemporal modulation. Nano Lett 9(11):3883–3889

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Müller CB, Enderlein J (2010) Image scanning microscopy. Phys Rev Lett 104(19):198101

    PubMed  Google Scholar 

  70. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    CAS  PubMed  Google Scholar 

  71. Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 60(5):495–497

    Google Scholar 

  72. Hell SW (2004) Strategy for far-field optical imaging and writing without diffraction limit. Phys Lett A 326(1–2):140–145

    CAS  Google Scholar 

  73. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    CAS  PubMed  Google Scholar 

  74. Dyba M, Hell SW (2002) Focal spots of size λ∕23 open up far-field florescence microscopy at 33 nm axial resolution. Phys Rev Lett 88(16):163901

    PubMed  Google Scholar 

  75. Westphal V, Kastrup L, Hell SW (2003a) Lateral resolution of 28 nm (λ/25) in far-field fluorescence microscopy. Appl Phys B Lasers Opt 77(4):377–380

    CAS  Google Scholar 

  76. Westphal V Hell SW (2005a) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94:143903

    PubMed  Google Scholar 

  77. Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103(31):11440–11445

    CAS  PubMed  Google Scholar 

  78. Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009a) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon 3(3):144–147

    CAS  Google Scholar 

  79. Wildanger D, Patton BR, Schill H, Marseglia L, Hadden JP, Knauer S, Schönle A, Rarity JG, O’Brien JL, Hell SW, Smith JM (2012) Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-Ångström emitter localization. Adv Mater 24(44):OP309–OP313

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kastrup L, Blom H, Eggeling C, Hell SW (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17):178104

    PubMed  Google Scholar 

  81. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233):1159–1162

    CAS  PubMed  Google Scholar 

  82. Ringemann C, Harke B, von Middendorff C, Medda R, Honigmann A, Wagner R, Leutenegger M, Schönle A, Hell SW, Eggeling C (2009) Exploring single-molecule dynamics with fluorescence nanoscopy. New J Phys 11(10):103054

    Google Scholar 

  83. Auksorius E, Boruah BR, Dunsby C, Lanigan PMP, Kennedy G, Neil MAA, French PMW (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33(2):113–115

    PubMed  Google Scholar 

  84. Dyba M, Jakobs S, Hell SW (2003) Immunofluorescence stimulated emission depletion microscopy. Nat Biotechnol 21(11):1303–1304

    CAS  PubMed  Google Scholar 

  85. Westphal V, Seeger J, Salditt T, Hell SW (2005) Stimulated emission depletion microscopy on lithographic nanostructures. J Phys B At Mol Opt Phys 38(9):S695–S705

    CAS  Google Scholar 

  86. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006a) Nanoscale resolution in GFP-based microscopy. Nat Methods 3(9):721–723

    Google Scholar 

  87. Hein B, Willig KI, Wurm CA, Westphal V, Jakobs S, Hell SW (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-Tag fusion proteins. Biophys J 98(1):158–163

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Han KY, Willig KI, Rittweger E, Jelezko F, Eggeling C, Hell SW (2009) Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett 9(9):3323–3329

    CAS  PubMed  Google Scholar 

  89. Irvine SE, Staudt T, Rittweger E, Engelhardt J, Hell SW (2008) Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew Chem Int Ed 47(14):2685–2688

    CAS  Google Scholar 

  90. Westphal V, Blanca CM, Dyba M, Kastrup L, Hell SW (2003b) Laser-diode-stimulated emission depletion microscopy. Appl Phys Lett 82(18):3125–3127

    CAS  Google Scholar 

  91. Rankin BR, Kellner RR, Hell SW (2008) Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Opt Lett 33(21):2491–2493

    PubMed  Google Scholar 

  92. Rankin BR, SW Hell (2009) STED microscopy with a MHz pulsed stimulated-Raman-scattering source. Opt Express 17(18):15679–15684

    CAS  PubMed  Google Scholar 

  93. Willig KI, Harke B, Medda R, Hell SW (2007) STED microscopy with continuous wave beams. Nat Methods 4(11):915–918

    Google Scholar 

  94. Ranka JK, Windeler RS, Stentz AJ (2000) Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt Lett 25(1):25–27

    CAS  PubMed  Google Scholar 

  95. Courvoisier C, Giust R (2006) Using a continuum of light in STED confocal microscopy. In: Proc. SPIE – biophotonics and new therapy frontiers, vol 6191, pp 619108

    Google Scholar 

  96. Wildanger D, Rittweger E, Kastrup L, Hell SW (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621

    PubMed  Google Scholar 

  97. Donnert G, Eggeling C, Hell SW (2007a) Major signal increase in fluorescence microscopy through dark-state relaxation. Nat Methods 4(1):81–86

    Google Scholar 

  98. Moneron G, Medda R, Hein B, Giske A, Westphal V, Hell SW (2010) Fast STED microscopy with continuous wave fiber lasers. Opt Express 18(2):1302–1309

    CAS  PubMed  Google Scholar 

  99. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, Schönle A, Jahn R, Jakobs S, Eggeling C, Hell SW (2007b) Two-color far-field fluorescence nanoscopy. Biophys J 92(8):L67–L69

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, Hell SW (2008) Dual-color STED microscopy at 30-nm focal-plane resolution. Small 4(8):1095–1100

    CAS  PubMed  Google Scholar 

  101. Neumann D, Bückers J, Kastrup L, Hell SW, Jakobs S (2010) Two-color sted microscopy reveals different degrees of colocalization between hexokinase-i and the three human VDAC isoforms. PMC Biophys 3(1):4

    PubMed Central  PubMed  Google Scholar 

  102. Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5(6):539–544

    Google Scholar 

  103. Lauterbach MA (2009) Fast STED Microscopy. PhD thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany

    Google Scholar 

  104. Friedemann K, Turshatov A, Landfester K, Crespy D (2011) Characterization via two-color STED microscopy of nanostructured materials synthesized by colloid electrospinning. Langmuir 27(11):7132–7139

    CAS  PubMed  Google Scholar 

  105. Tønnesen J, Nadrigny F, Willig KI, Wedlich-Söldner R, Nägerl UV (2011) Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 101:2545–2552

    PubMed Central  PubMed  Google Scholar 

  106. Willig KI, Stiel AC, Brakemann T, Jakobs S, Hell SW (2011) Dual-label sted nanoscopy of living cells using photochromism. Nano Lett 11(9):3970–3973

    CAS  PubMed  Google Scholar 

  107. Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143

    PubMed  Google Scholar 

  108. Lauterbach MA, Guillon M, Soltani A, Emiliani V (2013) STED microscope with spiral phase contrast. Sci Rep 3:2050

    PubMed Central  PubMed  Google Scholar 

  109. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    CAS  PubMed  Google Scholar 

  110. Ding JB, Takasaki KT, Sabatini BL (2009) Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy. Neuron 63(4):429–437

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Moneron G, Hell SW (2009) Two-photon excitation STED microscopy. Opt Express 17(17):14567–14573

    CAS  PubMed  Google Scholar 

  112. Li Q, Wu SSH, Chou KC (2009a) Subdiffraction-limit two-photon fluorescence microscopy for GFP-tagged cell imaging. Biophys J 97:3224–3228

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Belfield KD, Bondar MV, Yanez CO, Hernandez FE, Przhonska OV (2009) One- and two-photon stimulated emission depletion of a sulfonyl-containing fluorene derivative. J Phys Chem B 113(20):7101–7106

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Westphal V, Hell SW (2005b) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94(14):143903

    PubMed  Google Scholar 

  115. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15):8206–8210

    CAS  PubMed  Google Scholar 

  116. Harke B, Ullal CK, Keller J, Hell SW (2008a) Three-dimensional nanoscopy of colloidal crystals. Nano Lett 8(5):1309–1313

    CAS  PubMed  Google Scholar 

  117. Wildanger D, Medda R, Kastrup L, Hell SW (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43

    CAS  PubMed  Google Scholar 

  118. Gould TJ, Myers JR, Bewersdorf J (2011) Total internal reflection STED microscopy. Opt Express 19(14):13351–13357

    CAS  PubMed  Google Scholar 

  119. Leutenegger M, Ringemann C, Lasser T, Hell SW, Eggeling C (2012) Fluorescence correlation spectroscopy with a total internal reflection fluorescence STED microscope (TIRF-STED-FCS). Opt Express 20(5):5243–5263

    CAS  PubMed  Google Scholar 

  120. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    CAS  PubMed  Google Scholar 

  121. Friedrich M, Gan Q, Ermolayev V, Harms GS (2011) STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution. Biophys J 100:L43–L45

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Simpson GJ (2006) Biological imaging – the diffraction barrier broken. Nature 440(7086):879–880

    CAS  PubMed  Google Scholar 

  123. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312(5776):1051–1054

    CAS  PubMed  Google Scholar 

  124. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006b) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    CAS  PubMed  Google Scholar 

  125. Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci USA 104(7):2471–2476

    CAS  PubMed  Google Scholar 

  126. Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144(1):135–143

    CAS  PubMed  Google Scholar 

  127. Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 90(8):2843–2851

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12(4):444–453

    CAS  PubMed  Google Scholar 

  129. Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28(11):2874–2882

    CAS  PubMed  Google Scholar 

  130. Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW (2009) Mitochondrial cristae revealed with focused light. Nano Lett 9(6):2508–2510

    CAS  PubMed  Google Scholar 

  131. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci USA 105(38):14271–14276

    CAS  PubMed  Google Scholar 

  132. Nägerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci USA 105(48):18982–18987

    PubMed  Google Scholar 

  133. Hein B (2009) Live Cell STED Microscopy Using Genetically Encoded Markers. PhD thesis, Georg-August-Universität zu Göttingen

    Google Scholar 

  134. Urban NT, Willig KI, Hell SW, Nägerl UV (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Westphal V, Lauterbach MA, Di Nicola A, Hell SW (2007) Dynamic far-field fluorescence nanoscopy. New J Phys 9:435

    Google Scholar 

  137. Lauterbach MA, Ullal C, Westphal V, Hell SW (2010a) Dynamic imaging of colloidal-crystal nanostructurs at 200 frames per second. Langmuir 26(18):14400–14404

    CAS  PubMed  Google Scholar 

  138. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008a) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249

    CAS  PubMed  Google Scholar 

  139. Lauterbach MA, Keller J, Schönle A, Kamin D, Westphal V, Rizzoli SO, Hell SW (2010b) Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J Biophotonics 3(7):417–424

    PubMed  Google Scholar 

  140. Hoopmann P, Punge A, Barysch SV, Westphal V, Bückers J, Opazo F, Bethani I, Lauterbach MA, Hell SW, Rizzoli SO (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci USA 107(44):19055–19060

    CAS  PubMed  Google Scholar 

  141. Kamin D, Lauterbach MA, Westphal V, Keller J, Schönle A, Hell SW, Rizzoli SO (2010) High- and low-mobility stages in the synaptic vesicle cycle. Biophys J 99:675–684

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Ullal CK, Schmidt R, Hell SW, Egner A (2009) Block copolymer nanostructures mapped by far-field optics. Nano Lett 9(6):2497–2500

    CAS  PubMed  Google Scholar 

  143. Li LJ, Gattass RR, Gershgoren E, Hwang H, Fourkas JT (2009b) Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324(5929):910–913

    CAS  PubMed  Google Scholar 

  144. Scott TF, Kowalski BA, Sullivan AC, Bowman CN, McLeod RR (2009) Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science 324(5929):913–917

    CAS  PubMed  Google Scholar 

  145. Andrew TL, Tsai HY, Menon R (2009) Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science 324(5929):917–921

    CAS  PubMed  Google Scholar 

  146. Fischer J, Freymann G, Wegener M (2010) The materials challenge in diffractionunlimited direct-laser-writing optical lithography. Adv Mater 22:3578–3582

    CAS  PubMed  Google Scholar 

  147. Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A Mater Sci Process 77:859–860

    CAS  Google Scholar 

  148. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A Opt Image Sci Vis 19(8):1599–1609

    PubMed  Google Scholar 

  149. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98:218103

    PubMed  Google Scholar 

  150. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37):13081–13086

    CAS  PubMed  Google Scholar 

  151. Rittweger E, Wildanger D, Hell SW (2009b) Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Europhys Lett 86(1):14001

    Google Scholar 

  152. Han KY, Kim SK, Eggeling C, Hell SW (2010) Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett 10(8):3199–3203

    CAS  PubMed  Google Scholar 

  153. Eggeling C, Volkmer A, Seidel CAM (2005) Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem 6(5):791–804

    CAS  PubMed  Google Scholar 

  154. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102(49):17565–17569

    CAS  PubMed  Google Scholar 

  155. Bossi M, Fölling J, Dyba M, Westphal V, Hell SW (2006) Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J Phys 8:275

    Google Scholar 

  156. Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schoenle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208

    CAS  PubMed  Google Scholar 

  158. Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10):942–947

    CAS  PubMed  Google Scholar 

  159. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109(3):E135–E143

    CAS  PubMed  Google Scholar 

  160. Schwentker MA, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, Hell SW (2007) Wide-field subdiffraction RESOLFt microscopy using fluorescent protein photoswitching. Microsc Res Tech 70(3):269–280

    CAS  PubMed  Google Scholar 

  161. Chmyrov A, Keller J, Grotjohann T, Ratz M, d’Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 ‘doughnuts’. Nat Methods 10(8):737–740

    Google Scholar 

  162. Schwentker M. Parallelized ground state depletion. PhD thesis, Ruperto-Carola University of Heidelberg, 2007

    Google Scholar 

  163. Enderlein J (2005) Breaking the diffraction limit with dynamic saturation optical microscopy. Appl Phys Lett 87(9):094105

    Google Scholar 

  164. Sýkora J, Dertinger T, Enderlein J (2006) Dynamic optical saturation microscopy. In: Enderlein J, Gryczynski ZK (eds) Ultrasensitive and single-molecule detection technologies, vol 6092. Proc SPIE

    Google Scholar 

  165. Humpolíčková J, Benda A, Enderlein J (2009) Optical saturation as a versatile tool to enhance resolution in confocal microscopy. Biophys J 97(9):2623–2629

    PubMed Central  PubMed  Google Scholar 

  166. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CAS  PubMed  Google Scholar 

  167. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Google Scholar 

  168. Zhuang XW (2009) Nano-imaging with STORM. Nat Photon 3(7):365–367

    CAS  Google Scholar 

  169. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Heisenberg W (1930) Die physikalischen Prinzipien der Quantentheorie. Hirzel, Leipzig

    Google Scholar 

  171. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101:6462–6465

    CAS  PubMed  Google Scholar 

  173. Qu X, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA 101(31):11298–11303

    CAS  PubMed  Google Scholar 

  174. Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13(18):7052–7062

    PubMed  Google Scholar 

  175. Engelhardt J, Keller J, Hoyer P, Reuss M, Staudt T, Hell SW (2011) Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11:209–213

    CAS  PubMed  Google Scholar 

  176. Egner A, Geisler C, von Middendorff C, Bock H, Wenzel D, Medda R, Andresen M, Stiel AC, Jakobs S, Eggeling C, Schönle A, Hell SW (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Biteen JS, Thompson MA, Tselentis NK, Shapiro L, Moerner WE (2009) Superresolution imaging in live caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein. In: Proc SPIE – Single Molecule Spectroscopy and Imaging II, vol 7185, pp 71850I

    Google Scholar 

  178. Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B Lasers Opt 93(1):1–12

    CAS  Google Scholar 

  179. Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106(9):3125–3130

    CAS  PubMed  Google Scholar 

  180. Peng W (2009) PALM reading. Nat Methods 6(4):243–243

    Google Scholar 

  181. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 106(9):2995–2999

    CAS  PubMed  Google Scholar 

  182. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    CAS  Google Scholar 

  183. Fölling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Google Scholar 

  184. Fölling J (2008) High-resolution microscopy with photoswitchable organic markers. PhD thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany

    Google Scholar 

  185. Andresen M, Stiel AC, Fölling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040

    CAS  PubMed  Google Scholar 

  186. Fölling J, Belov V, Kunetsky R, Medda R, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46(33):6266–6270

    Google Scholar 

  187. Bock H, Geisler C, Wurm CA, von Middendorff C, Jakobs S, Schönle A, Egner A, Hell SW, Eggeling C (2007) Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl Phys B Lasers Opt 88(2):161–165

    Google Scholar 

  188. Steinhauer C, Forthmann C, Vogelsang J, Tinnefeld P (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130(50):16840–16841

    CAS  PubMed  Google Scholar 

  189. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103(50):18911–18916

    CAS  PubMed  Google Scholar 

  190. Schwering M, Kiel A, Kurz A, Lymperopoulos K, Sprödefeld A, Krämer R, Herten D-P (2011) Far-field nanoscopy with reversible chemical reactions. Angew Chem Int Ed 50(13):2940–2945

    CAS  Google Scholar 

  191. Hoyer P, Staudt T, Engelhardt J, Hell SW (2011) Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Lett 11(1):245–250

    CAS  PubMed  Google Scholar 

  192. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Endesfelder U, van de Linde S, Wolter S, Sauer M, Heilemann M (2010) Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. Chem Phys Chem 11(4):836–840

    CAS  PubMed  Google Scholar 

  194. Jones SA, Shim S-H, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508

    Google Scholar 

  195. Einstein A (1916) Zur Quantentheorie der Strahlung. Mitteilungen der Physikalischen Gesellschaft Zürich 18:47–62

    Google Scholar 

  196. McCumber DE (1964) Einstein relations connecting broadband emission and absorption spectra. Phys Rev A Gen Phys 136(4A):A954–A957

    Google Scholar 

  197. Jabłoński A (1933) Efficiency of Anti-Stokes fluorescence in dyes. Nature 131:839–840

    Google Scholar 

  198. Smentek L (2009) Different sides of the Jabłoński diagram on its 75th anniversary. Newsletter of the Forum on International Physics, American Physical Society, http://www.aps.org/units/fip/newsletters/200906/upload/jablonski.pdf

  199. Giske A (2007) CryoSTED microscopy A new spectroscopic approach for improving the resolution of STED microscopy using low temperature. PhD thesis, Ruperto-Carola University of Heidelberg, Germany

    Google Scholar 

  200. Willig KI (2006) STED microscopy in the visible range. PhD thesis, Ruperto-Carola University of Heidelberg, Germany

    Google Scholar 

  201. Klar TA, Engel E, Hell SW (2001) Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys Rev E 64(6):066613

    CAS  Google Scholar 

  202. Harke B, Keller J, Ullal CK, Westphal V, Schönle A, Hell SW (2008b) Resolution scaling in STED microscopy. Opt Express 16(6):4154–4162

    PubMed  Google Scholar 

  203. Bingen P, Reuss M, Engelhardt J, Hell SW (2011) Parallelized STED fluorescence nanoscopy. Opt Express 19(24):23716–23726

    CAS  PubMed  Google Scholar 

  204. Gregor I, Patra D, Enderlein J (2004) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 5:1–7

    Google Scholar 

  205. Harke B (2008) 3D STED Microscopy with Pulsed and Continuous Wave Lasers. PhD thesis, Georg-August-Universität zu Göttingen, Göttingen, Germany

    Google Scholar 

  206. Leutenegger M, Eggeling C, Hell SW (2010) Analytical description of STED microscopy performance. Opt Express 18(25):26417–26429

    CAS  PubMed  Google Scholar 

  207. Vicidomini G, Moneron G, Han KY, Westphal V, Ta H, Reuss M, Engelhardt J, Eggeling C, Hell SW (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7):571–573

    Google Scholar 

  208. Schrader M, Meinecke F, Bahlmann L, Kroug M, Cremer C, Soini E, Hell SW (1995) Monitoring the excited state of a fluorophore in a microscope by stimulated emission. Bioimaging 3(4):147–153

    CAS  Google Scholar 

  209. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of sted microscopy. Opt Express 19(5):4242–4254

    PubMed  Google Scholar 

  210. Vicidomini G, Schönle A, Ta H, Han KY, Moneron G, Eggeling C, Hell SW (2013) STED nanoscopy with time-gated detection: Theoretical and experimental aspects. PLoS ONE 8(1):e54421

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008b) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249

    CAS  PubMed  Google Scholar 

  212. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    CAS  Google Scholar 

  213. Ehrenberg M, Rigler R (1974) Rotational brownian motion and fluorescence intensify fluctuations. Chem Phys 4(3):390–401

    CAS  Google Scholar 

  214. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2):153–166

    CAS  PubMed  Google Scholar 

  215. Widengren J, Rigler R (1990) Ultrasensitive detection of single molecules using fluorescence correlation spectroscopy. In: Klinge B, Owman C (eds) Bioscience. Lund University Press, Lund, pp 180–183

    Google Scholar 

  216. Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89(6):4029–4042

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50

    CAS  PubMed  Google Scholar 

  218. Ronchi V (1961) Resolving power of calculated and detected images. J Opt Soc Am 51(4):458–460

    Google Scholar 

  219. Whittaker ET (1915) On the functions which are represented by the expansions of the interpolation-theory. Proc R Soc 35:181–194

    Google Scholar 

  220. Lüke HD (1999) The origins of the sampling theorem. IEEE Commun Mag 37(4):106–108

    Google Scholar 

  221. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423 and 623–656

    Google Scholar 

  222. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):10–21

    Google Scholar 

  223. Nyquist H (1928) Certain topics in telegraph transmission theory. J Am Inst Electr Eng 47:214–216

    Google Scholar 

  224. Rayleigh JW (1874) On the manufacture and theory of diffraction-gratings. Philos Mag Ser 4 47(310):81–93

    Google Scholar 

  225. Carlsson K, Wallen P, Brodin L (1989) 3-dimensional imaging of neurons by confocal fluorescence microscopy. J Microsc 155:15–26

    CAS  PubMed  Google Scholar 

  226. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Google Scholar 

  227. Ram S, Ward ES, Ober RJ (2006) Beyond rayleigh’s criterion: A resolution measure with application to single-molecule microscopy. Proc Natl Acad Sci USA 103(12):4457–4462

    CAS  PubMed  Google Scholar 

  228. Kolobov MI (2008) Quantum limits of superresolution for imaging discrete subwavelength structures. Opt Express 16(1):58–66

    PubMed  Google Scholar 

  229. Beskrovny VN, Kolobov MI (2008) Quantum-statistical analysis of superresolution for optical systems with circular symmetry. Phys Rev A 78(4):043824

    Google Scholar 

  230. Falconi O (1967) Limits to which double lines, double stars, and disks can be resolved and measured. J Opt Soc Am 57(8):987–993

    Google Scholar 

  231. Lucy LB (1992) Statistical limits to superresolution. Astron Astrophys 261(2):706–710

    Google Scholar 

  232. Fried DL (1979) Resolution, signal-to-noise ratio, and measurement precision. J Opt Soc Am 69(3):399–406

    Google Scholar 

  233. Fannjiang A, Sølna K (2007) Broadband resolution analysis for imaging with measurement noise. J Opt Soc Am A Opt Image Sci Vis 24(6):1623–1632

    PubMed  Google Scholar 

  234. Terebizh VYu (1999) Using a priori information in image restoration: Natural resolution limit. Astron Rep 43(1):42–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lauterbach, M.A., Eggeling, C. (2014). Foundations of Sted Microscopy. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics