Skip to main content

Atomic Force Microscopy of Living Cells

  • Protocol
  • First Online:
Super-Resolution Microscopy Techniques in the Neurosciences

Part of the book series: Neuromethods ((NM,volume 86))

Abstract

Atomic force microscopy (AFM) is a powerful technique for analyzing the structure, properties, and interactions of living cells down to molecular resolution. Rather than using an incident beam as in optical and electron microscopies, AFM measures the tiny forces acting between a sharp tip and the sample surface. While AFM imaging provides information about the nanoscale surface architecture of living cells in real time, single-molecule force spectroscopy analyzes the localization, mechanics, and interactions of the individual cell surface constituents, thereby contributing to elucidate the molecular bases of cellular events like cell adhesion and mechanosensing. In this chapter, we describe the principles of AFM and explain relevant experimental procedures, we survey recent progress made in applying AFM to microbial cells, and we discuss two recent case studies carried out in our laboratory in which the technique could unravel the mechanical and clustering behavior of cell surface sensors and adhesion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beveridge TJ, Graham LL (1991) Surface layers of bacteria. Microbiol Rev 55(4):684–705

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Mozes N et al (1991) Microbial cell surface analysis. Structural and physico-chemical methods. VCH Publishers, New York

    Google Scholar 

  3. Beveridge TJ (1981) Ultrastructure, chemistry and function of the bacterial cell wall. Int Rev Cytol 72:229–317

    CAS  PubMed  Google Scholar 

  4. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123(3):397–413

    CAS  Google Scholar 

  5. García-Rodríguez LJ et al (2005) Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Lett 579(27):6186–6190

    PubMed  Google Scholar 

  6. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69(2):262–291

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Klis FM et al (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26(3):239–256

    CAS  PubMed  Google Scholar 

  8. Rodicio R, Heinisch JJ (2010) Together we are strong—cell wall integrity sensors in yeasts. Yeast 27(8):531–540

    CAS  PubMed  Google Scholar 

  9. Dranginis AM et al (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71(2):282–294

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Lewin R (1984) Microbial adhesion is a sticky problem. Science 224:375–377

    CAS  PubMed  Google Scholar 

  11. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand receptor pairs. Science 264(5157):415–417

    CAS  PubMed  Google Scholar 

  12. Van der Mei HC, Van de Belt-Grotter B, Busscher HJ (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 2. Adhesion mechanisms. Colloids Surf B Biointerfaces 5:117–126

    Google Scholar 

  13. Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4(8):461–469

    CAS  PubMed  Google Scholar 

  14. Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113(6):767–776

    CAS  PubMed  Google Scholar 

  15. Turner RD et al (2010) Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun 1:26. doi:10.1038/ncomms1025

    PubMed  Google Scholar 

  16. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    CAS  PubMed  Google Scholar 

  17. Gitai Z (2009) New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Curr Opin Microbiol 12(3):341–346

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Matias VRF, Beveridge TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 56(1):240–251

    CAS  PubMed  Google Scholar 

  19. Milne JLS, Subramaniam S (2009) Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat Rev Microbiol 7(9):666–675

    CAS  PubMed  Google Scholar 

  20. Pierres A et al (2002) Dissecting streptavidin-biotin interaction with a laminar flow chamber. Biophys J 82(6):3214–3223

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Evans EA, Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Science 316(5828):1148–1153

    CAS  PubMed  Google Scholar 

  22. Bustamante C, Macosko JC, Wuite GJL (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1(2):130–136

    CAS  PubMed  Google Scholar 

  23. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science 316(5828):1144–1148

    CAS  PubMed  Google Scholar 

  24. Muller DJ, Dufrêne YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3(5):261–269

    PubMed  Google Scholar 

  25. Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355

    CAS  PubMed  Google Scholar 

  26. Dufrêne YF (2008) Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6:674–680

    PubMed  Google Scholar 

  27. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Muller DJ et al (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5(6):383–390

    PubMed  Google Scholar 

  29. Binnig G et al (1982) Tunneling through a controllable vacuum gap. Appl Phys Lett 40(2):178–180

    CAS  Google Scholar 

  30. Pohl DW, Denk W, Lanz M (1984) Optical stethoscopy—image recording with resolution λ/20. Appl Phys Lett 44(7):651–653

    Google Scholar 

  31. Lewis A et al (1984) Development of a 500 Å spatial resolution microscope: I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13(3):227–231

    Google Scholar 

  32. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    PubMed  Google Scholar 

  33. Jena BP, Hörber JKH (2002) Atomic force microscopy in cell biology. In: Wilson L, Matsudaira PT (eds) Methods in cell biology, vol 68. Academic, San Diego, CA

    Google Scholar 

  34. Weisenhorn AL et al (1989) Forces in atomic force microscope in air and water. Appl Phys Lett 54(26):2651–2653

    Google Scholar 

  35. Dufrêne YF (2004) Using nanotechniques to explore microbial surfaces. Nat Rev Microbiol 2(6):451–460

    PubMed  Google Scholar 

  36. Magonov SN, Elings V, Whangbo MH (1997) Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 375(2–3):L385–L391

    CAS  Google Scholar 

  37. Muller DJ et al (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Curr Opin Biotechnol 20(1):4–13

    PubMed  Google Scholar 

  38. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Sur Sci Rep 59(1–6):1–152

    CAS  Google Scholar 

  39. Gaboriaud F, Dufrêne YF (2007) Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces. Colloids Surf B Biointerfaces 54:10–19

    CAS  PubMed  Google Scholar 

  40. Dupres V, Verbelen C, Dufrêne YF (2007) Probing molecular recognition sites on biosurfaces using AFM. Biomaterials 28(15):2393–2402

    CAS  PubMed  Google Scholar 

  41. Heinz WF, Hoh JH (1999) Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol 17(4):143–150

    CAS  PubMed  Google Scholar 

  42. Heinz WF, Hoh JH (1999) Relative surface charge density mapping with the atomic force microscope. Biophys J 76(1):528–538

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Ludwig M, Dettmann W, Gaub HE (1997) Atomic force microscope imaging contrast based on molecular recognition. Biophys J 72(1):445–448

    CAS  PubMed Central  PubMed  Google Scholar 

  44. A-Hassan E et al (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74(3):1564–1578

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Touhami A, Nysten B, Dufrêne YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539

    CAS  Google Scholar 

  46. Gad M, Itoh A, Ikai A (1997) Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy. Cell Biol Int 21(11):697–706

    CAS  PubMed  Google Scholar 

  47. Frisbie CD et al (1994) Functional-group imaging by chemical force microscopy. Science 265(5181):2071–2074

    CAS  PubMed  Google Scholar 

  48. Noy A et al (1995) Chemical force microscopy exploiting chemically-modified tips to quantify adhesion, friction, and functional-group distributions in molecular assemblies. J Am Chem Soc 117(30):7943–7951

    CAS  Google Scholar 

  49. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266(5186):771–773

    CAS  PubMed  Google Scholar 

  50. Touhami A et al (2003) Probing specific lectin-carbohydrate interactions using atomic force microscopy imaging and force measurements. Langmuir 19(5):1745–1751

    CAS  Google Scholar 

  51. Berquand A et al (2005) Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir 21(12):5517–5523

    CAS  PubMed  Google Scholar 

  52. Dupres V et al (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2(7):515–520

    CAS  PubMed  Google Scholar 

  53. Hinterdorfer P et al (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93(8):3477–3481

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Allen S et al (1997) Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry 36(24):7457–7463

    CAS  PubMed  Google Scholar 

  55. Riener CK et al (2003) Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal Chim Acta 497(1–2):101–114

    CAS  Google Scholar 

  56. Ebner A et al (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 18(4):1176–1184

    CAS  PubMed  Google Scholar 

  57. Ros R et al (1998) Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci U S A 95(13):7402–7405

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Schwesinger F et al (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci U S A 97(18):9972–9977

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Baumgartner W et al (2003) Ca2+ dependency of N-cadherin function probed by laser tweezer and atomic force microscopy. J Neurosci 23(35):11008–11014

    CAS  PubMed  Google Scholar 

  60. Stroh C et al (2004) Single-molecule recognition imaging-microscopy. Proc Natl Acad Sci U S A 101(34):12503–12507

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Baumgartner W et al (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci U S A 97(8):4005–4010

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Helenius J et al (2008) Single-cell force spectroscopy. J Cell Sci 121(11):1785–1791

    CAS  PubMed  Google Scholar 

  63. Razatos A et al (1998) Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci U S A 95(19):11059–11064

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ong YL et al (1999) Adhesion forces between E-coli bacteria and biomaterial surfaces. Langmuir 15(8):2719–2725

    CAS  Google Scholar 

  65. Bowen WR et al (1998) Direct measurement of the force of adhesion of a single biological cell using an atomic force microscope. Colloids Surf Physicochem Eng Aspects 136(1–2):231–234

    CAS  Google Scholar 

  66. Lower SK, Hochella MF, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Schewanella and α-FeOOH. Science 292:1360–1363

    CAS  PubMed  Google Scholar 

  67. Benoit M et al (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6):313–317

    CAS  PubMed  Google Scholar 

  68. Gad M, Ikai A (1995) Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys J 69(6):2226–2233

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Radmacher M et al (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257(5078):1900–1905

    CAS  PubMed  Google Scholar 

  70. Meyer RL et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110(11):1349–1357

    Google Scholar 

  71. Hoh JH, Schonenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 107:1105–1114

    PubMed  Google Scholar 

  72. Matzke R, Jacobson K, Radmacher M (2001) Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 3(6):607–610

    CAS  PubMed  Google Scholar 

  73. Zhang XH et al (2004) Atomic force microscopy measurement of leukocyte-endothelial interaction. Am J Physiol Heart Circ Physiol 286(1):H359–H367

    CAS  PubMed  Google Scholar 

  74. Parpura V, Haydon PG, Henderson E (1993) 3-Dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci 104:427–432

    PubMed  Google Scholar 

  75. Bolshakova AV et al (2001) Comparative studies of bacteria with an atomic force microscopy operating in different modes. Ultramicroscopy 86(1–2):121–128

    CAS  PubMed  Google Scholar 

  76. Vadillo-Rodriguez V et al (2004) Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for the three commonly used immobilization methods. Appl Environ Microbiol 70(9):5441–5446

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Touhami A et al (2006) Nano-scale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili using atomic force microscopy. J Bacteriol 188(2):370–377

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Camesano TA, Logan BE (2000) Probing bacterial electrosteric interactions using atomic force microscopy. Environ Sci Technol 34:3354–3362

    CAS  Google Scholar 

  79. Colville K et al (2010) Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir 26(4):2639–2644

    CAS  PubMed  Google Scholar 

  80. Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68(5):1678–1680

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Turner RD et al (2010) Improvement of the pore trapping method to immobilize vital coccoid bacteria for high-resolution AFM: a study of Staphylococcus aureus. J Microsc 238(2):102–110

    CAS  PubMed  Google Scholar 

  82. Scheuring S, Dufrêne YF (2010) Atomic force microscopy: probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol 75(6):1327–1336

    CAS  PubMed  Google Scholar 

  83. El Kirat K, Morandat S, Dufrêne YF (2010) Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochim Biophys Acta 1798(4):750–765

    PubMed  Google Scholar 

  84. Liu SY, Wang YF (2010) Application of AFM in microbiology: a review. Scanning 32(2):61–73

    CAS  PubMed  Google Scholar 

  85. Dorobantu LS, Gray MR (2010) Application of atomic force microscopy in bacterial research. Scanning 32(2):74–96

    CAS  PubMed  Google Scholar 

  86. Butt HJ, Downing KH, Hansma PK (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J 58(6):1473–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Muller DJ et al (1995) Imaging purple membranes in aqueous solutions at subnanometer resolution by atomic force microscopy. Biophys J 68(5):1681–1686

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Schabert FA, Henn C, Engel A (1995) Native Escherichia coli OMPF porin surfaces probed by atomic force microscopy. Science 268(5207):92–94

    CAS  PubMed  Google Scholar 

  89. Scheuring S et al (1999) High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J 18(18):4981–4987

    CAS  PubMed  Google Scholar 

  90. Scheuring S et al (2002) Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 44(3):675–684

    CAS  PubMed  Google Scholar 

  91. Müller DJ, Baumeister W, Engel A (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J Bacteriol 178(11):3025–3030

    PubMed Central  PubMed  Google Scholar 

  92. Gyorvary ES et al (2003) Self-assembly and recrystallization of bacterial S-layer proteins at silicon supports imaged in real time by atomic force microscopy. J Microsc 212:300–306

    CAS  PubMed  Google Scholar 

  93. Müller DJ, Engel A (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol 285(4):1347–1351

    PubMed  Google Scholar 

  94. Ando T et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hansma PK et al (2006) High-speed atomic force microscopy. Science 314(5799):601–602

    CAS  PubMed  Google Scholar 

  96. Humphris ADL, Miles MJ, Hobbs JK (2005) A mechanical microscope: high-speed atomic force microscopy. Appl Phys Lett 86(3):3

    Google Scholar 

  97. Casuso I et al (2009) Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane. Biophys J 97(5):1354–1361

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shibata M et al (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5(3):208–212

    CAS  PubMed  Google Scholar 

  99. Casuso I, Scheuring S (2010) Automated setpoint adjustment for biological contact mode atomic force microscopy imaging. Nanotechnology 21(3):035104

    PubMed  Google Scholar 

  100. Ahimou FO, Touhami A, Dufrêne YF (2003) Real-time imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20(1):25–30

    CAS  PubMed  Google Scholar 

  101. Dufrêne YF et al (1999) Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J Bacteriol 181(17):5350–5354

    PubMed Central  PubMed  Google Scholar 

  102. Almqvist N et al (2001) Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy. J Microsc 202(3):518–532

    CAS  PubMed  Google Scholar 

  103. Francius G et al (2008) Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ Microbiol 10(5):1344–1356

    CAS  PubMed  Google Scholar 

  104. Boonaert CJP, Rouxhet PG (2000) Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. Appl Environ Microbiol 66(6):2548–2554

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Doktycz MJ et al (2003) AFM imaging of bacteria immobilized on gelatin coated mica surfaces. Ultramicroscopy 97:209–216

    CAS  PubMed  Google Scholar 

  106. Dague E et al (2007) Chemical force microscopy of single live cells. Nano Lett 7:3026–3030

    CAS  PubMed  Google Scholar 

  107. Dupres V et al (2009) In vivo imaging of S-layer nanoarrays on Corynebacterium glutamicum. Langmuir 25(17):9653–9655

    CAS  PubMed  Google Scholar 

  108. Dague E et al (2008) High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys J 94(2):656–660

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Touhami A, Jericho MH, Beveridge TJ (2004) Atomic force microscopy of cell growth and division in Staphylococcus aureus. J Bacteriol 186(11):3286–3295

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Kailas L et al (2009) Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 109(7):775–780

    CAS  PubMed  Google Scholar 

  111. Plomp M et al (2007) In vitro high-resolution structural dynamics of single germinating bacterial spores. Proc Natl Acad Sci U S A 104(23):9644–9649

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Andre G et al (2010) Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells. Nat Commun 1:27. doi:10.1038/ncomms1027

    PubMed  Google Scholar 

  113. Yang L et al (2006) Atomic force microscopy study of different effects of natural and semisynthetic β-lactam on the cell envelope of Escherichia coli. Anal Chem 78(20):7341–7345

    CAS  PubMed  Google Scholar 

  114. Verbelen C et al (2006) Ethambutol-induced alterations in Mycobacterium bovis BCG imaged by atomic force microscopy. FEMS Microbiol Lett 264(2):192–197

    CAS  PubMed  Google Scholar 

  115. Alsteens D et al (2008) Organization of the mycobacterial cell wall: a nanoscale view. Eur J Physiol 456:117–125

    CAS  Google Scholar 

  116. Francius G et al (2008) Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 190(24):7904–7909

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fantner GE et al (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5(4):280–285

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Dorobantu LS et al (2008) Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. Langmuir 24(9):4944–4951

    CAS  PubMed  Google Scholar 

  119. Ahimou F et al (2002) Probing microbial cell surface charges by atomic force microscopy. Langmuir 18(25):9937–9941

    CAS  Google Scholar 

  120. Kasas S, Dietler G (2008) Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 456(1):13–27

    CAS  PubMed  Google Scholar 

  121. Pelling AE et al (2005) Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102(18):6484–6489

    CAS  PubMed Central  PubMed  Google Scholar 

  122. da Silva A, Teschke O (2005) Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J Microbiol Biotechnol 21(6–7):1103–1110

    Google Scholar 

  123. Gaboriaud F et al (2005) Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol 187(11):3864–3868

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Cerf A et al (2009) Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir 25(10):5731–5736

    CAS  PubMed  Google Scholar 

  125. Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin biotin interactions with atomic force microscopy. Langmuir 10(2):354–357

    CAS  Google Scholar 

  126. Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    CAS  PubMed  Google Scholar 

  127. Oberhauser AF et al (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393(6681):181–185

    CAS  PubMed  Google Scholar 

  128. Rief M et al (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286(2):553–561

    CAS  PubMed  Google Scholar 

  129. Rief M et al (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    CAS  PubMed  Google Scholar 

  130. Gilbert Y et al (2007) Single-molecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. Nano Lett 7(3):796–801

    CAS  PubMed  Google Scholar 

  131. Francius G et al (2008) Detection, localization and conformational analysis of single polysacchride molecules on live bacteria. ACS Nano 2(9):1921–1929

    CAS  PubMed  Google Scholar 

  132. van der Aa BC et al (2001) Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17(11):3116–3119

    Google Scholar 

  133. Abu-Lail NI, Camesano TA (2002) Elasticity of Pseudomonas putida KT2442 surface polymers with single-molecule force microscopy. Langmuir 18:4071–4081

    CAS  Google Scholar 

  134. Camesano TA, Abu-Lail NI (2002) Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis. Biomacromolecules 3(4):661–667

    CAS  PubMed  Google Scholar 

  135. Dupres V et al (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5(11):857–862

    CAS  PubMed  Google Scholar 

  136. Velegol SB, Logan BE (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18(13):5256–5262

    CAS  Google Scholar 

  137. Lee G et al (2006) Nanospring behaviour of ankyrin repeats. Nature 440(7081):246–249

    CAS  PubMed  Google Scholar 

  138. Straede A, Heinisch JJ (2007) Functional analyses of the extra- and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1. FEBS Lett 581(23):4495–4500

    CAS  PubMed  Google Scholar 

  139. Brown AEX, Discher DE (2009) Conformational changes and signaling in cell and matrix physics. Curr Biol 19(17):R781–R789

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    CAS  PubMed  Google Scholar 

  141. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha(5)beta(1) function. Science 323(5914):642–644

    CAS  PubMed  Google Scholar 

  142. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    CAS  PubMed  Google Scholar 

  143. Bershadsky AD, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481

    CAS  PubMed  Google Scholar 

  144. Smith AS et al (2008) Force-induced growth of adhesion domains is controlled by receptor mobility. Proc Natl Acad Sci U S A 105(19):6906–6911

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Alsteens D et al (2009) Unfolding individual Als5p adhesion proteins on live cells. ACS Nano 3:1677–1682

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Alsteens D et al (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci U S A 107(48):20744–20749

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Rauceo JM et al (2006) Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 5(10):1664–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Otoo HN et al (2008) Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 7(5):768–782

    Google Scholar 

Download references

Acknowledgments

Work in our team was supported by the National Foundation for Scientific Research (FNRS), the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), and the Research Department of the Communauté française de Belgique (Concerted Research Action). Y.F. Dufrêne and D. Alsteens are Senior Research Associate and Research Fellow of the FRS-FNRS.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alsteens, D., Dufrêne, Y.F. (2014). Atomic Force Microscopy of Living Cells. In: Fornasiero, E., Rizzoli, S. (eds) Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, vol 86. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-983-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-983-3_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-982-6

  • Online ISBN: 978-1-62703-983-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics