Skip to main content

Preparation of Yeast Whole Cell Splicing Extract

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

Pre-mRNA splicing, the removal of introns from pre-messenger RNA, is an essential step in eukaryotic gene expression. In humans, it has been estimated that 60 % of noninfectious diseases are caused by errors in splicing, making the study of pre-mRNA splicing a high priority from a health perspective. Pre-mRNA splicing is also complicated: the molecular machine that catalyzes the reaction, the spliceosome, is composed of five small nuclear RNAs, and over 100 proteins, making splicing one of the most complex processes in the cell.

An important tool for studying pre-mRNA splicing is the in vitro splicing assay. With an in vitro assay, it is possible to test the function of each splicing component by removing the endogenous version and replacing it (or reconstituting it) with a modified one. This assay relies on the ability to produce an extract—either whole cell or nuclear—that contains all of the activities required to convert pre-mRNA to mRNA. To date, splicing extracts have only been produced from human and S. cerevisiae (yeast) cells. We describe a method to produce whole cell extracts from yeast that support splicing with efficiencies up to 90 %. These extracts have been used to reconstitute snRNAs, screen small molecule libraries for splicing inhibitors, and purify a variety of splicing complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Pro Natl Acad Sci USA 74:3171–3175

    Article  CAS  Google Scholar 

  2. Chow LT, Gelinas RE, Broker TR et al (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8

    Article  PubMed  CAS  Google Scholar 

  3. Kinniburgh AJ, Mertz JE, Ross J (1978) The precursor of mouse beta-globin messenger RNA contains two intervening RNA sequences. Cell 14:681–693

    Article  PubMed  CAS  Google Scholar 

  4. Tilghman SM, Tiemeier DC, Seidman JG et al (1978) Intervening sequence of DNA identified in the structural portion of a mouse beta-globin gene. Pro Natl Acad Sci USA 75:725–729

    Article  CAS  Google Scholar 

  5. Catterall JF, O'Malley BW, Robertson MA et al (1978) Nucleotide sequence homology at 12 intron–exon junctions in the chick ovalbumin gene. Nature 275:510–513

    Article  PubMed  CAS  Google Scholar 

  6. Krainer AR, Maniatis T, Ruskin B et al (1984) Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36:993–1005

    Article  PubMed  CAS  Google Scholar 

  7. Lin RJ, Newman AJ, Cheng SC et al (1985) Yeast mRNA splicing in vitro. J Biol Chem 260:14780–14792

    PubMed  CAS  Google Scholar 

  8. McPheeters DS, Fabrizio P, Abelson J (1989) In vitro reconstitution of functional yeast U2 snRNPs. Gene Dev 3:2124–2136

    Article  PubMed  CAS  Google Scholar 

  9. Hayduk AJ, Stark MR, Rader SD (2012) In vitro reconstitution of yeast splicing with U4 snRNA reveals multiple roles for the 3′ stem-loop. RNA 18:1075–1090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. O’Keefe RT, Norman C, Newman AJ (1996) The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 86:679–689

    Article  PubMed  Google Scholar 

  11. Fabrizio P, McPheeters DS, Abelson J (1989) In vitro assembly of yeast U6 snRNP: a functional assay. Gene Dev 3:2137–2150

    Article  PubMed  CAS  Google Scholar 

  12. Madhani HD, Bordonné R, Guthrie C (1990) Multiple roles for U6 snRNA in the splicing pathway. Gene Dev 4:2264–2277

    Article  PubMed  CAS  Google Scholar 

  13. Sontheimer EJ (1994) Site-specific RNA crosslinking with 4-thiouridine. Mol Biol Rep 20:35–44

    Article  PubMed  CAS  Google Scholar 

  14. Chen JL, Nolan JM, Harris ME et al (1998) Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J 17:1515–1525

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Ryan DE, Kim CH, Murray JB et al (2004) New tertiary constraints between the RNA components of active yeast spliceosomes: a photo-crosslinking study. RNA 10:1251–1265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Cheng SC, Abelson J (1987) Spliceosome assembly in yeast. Gene Dev 1:1014–1027

    Article  PubMed  CAS  Google Scholar 

  17. Konarska MM, Sharp PA (1986) Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46:845–855

    Article  PubMed  CAS  Google Scholar 

  18. Konarska MM, Sharp PA (1987) Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49:763–774

    Article  PubMed  CAS  Google Scholar 

  19. Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harb Perspect Biol 3:1–23

    Article  CAS  Google Scholar 

  20. Aukema KG, Chohan KK, Plourde GL et al (2009) Small molecule inhibitors of yeast pre-mRNA splicing. ACS Chem Biol 4:759–768

    Article  PubMed  CAS  Google Scholar 

  21. Kaida D, Motoyoshi H, Tashiro E et al (2007) Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 3:576–583

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien K, Matlin AJ, Lowell AM et al (2008) The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J Biol Chem 283:33147–33154

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nakajima H, Hori Y, Terano H et al (1996) New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot 49:1204–1211

    Article  PubMed  CAS  Google Scholar 

  24. Smith DJ, Query CC, Konarska MM (2008) “Nought may endure but mutability”: spliceosome dynamics and the regulation of splicing. Mol Cell 30:657–666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Crawford DJ, Hoskins AA, Friedman LJ et al (2008) Visualizing the splicing of single pre-mRNA molecules in whole cell extract. RNA 14:170–179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453

    Article  PubMed  CAS  Google Scholar 

  28. Vijayraghavan U, Parker R, Tamm J et al (1986) Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J 5:1683–1695

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge extensive discussions with and advice from Rabiah Mayas, Jon Staley, and Beate Schwer as we optimized this protocol in our lab. We also acknowledge Martha Stark’s contributions to developing the method and editing this manuscript. This work was supported by NSERC Discovery Grant 298521 and UNBC Office of Research awards to SDR and an NSERC PGS award to EAD.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dunn, E.A., Rader, S.D. (2014). Preparation of Yeast Whole Cell Splicing Extract. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics