Skip to main content

Regulation of Alternative Pre-mRNA Splicing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

Alternative splicing plays a prevalent role in generating functionally diversified proteomes from genomes with a more limited repertoire of protein-coding genes. Alternative splicing is frequently regulated with cell type or developmental specificity and in response to signaling pathways, and its mis-regulation can lead to disease. Co-regulated programs of alternative splicing involve interplay between a host of cis-acting transcript features and trans-acting RNA-binding proteins. Here, we review the current state of understanding of the logic and mechanism of regulated alternative splicing and indicate how this understanding can be exploited to manipulate splicing for therapeutic purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10:621–637

    PubMed  CAS  Google Scholar 

  3. Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–813

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    PubMed  CAS  Google Scholar 

  6. Hallegger M, Llorian M, Smith CW (2010) Alternative splicing: global insights. FEBS J 277:856–866

    PubMed  CAS  Google Scholar 

  7. Barash Y, Calarco JA, Gao W et al (2010) Deciphering the splicing code. Nature 465: 53–59

    PubMed  CAS  Google Scholar 

  8. Zhang C, Frias MA, Mele A et al (2010) Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329:439–443

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Luco RF, Allo M, Schor IE et al (2012) Epigenetics in alternative pre-mRNA splicing. Cell 144:16–26

    Google Scholar 

  10. Burge C, Tuschl T, Sharp P (1999) Splicing of precursors to mRNAs by spliceosomes. In: Gestetland R, Cech T, Atkins J (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 525–560

    Google Scholar 

  11. Roca X, Krainer AR, Eperon IC (2013) Pick one, but be quick: 5′ splice sites and the problems of too many choices. Genes Dev 27:129–144

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    PubMed  CAS  Google Scholar 

  13. Chasin LA (2007) Searching for splicing motifs. Adv Exp Med Biol 623:85–106

    PubMed  Google Scholar 

  14. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241–1250

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Ke S, Shang S, Kalachikov SM et al (2011) Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res 21:1360–1374

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Clery A, Blatter M, Allain FH (2008) RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18:290–298

    PubMed  CAS  Google Scholar 

  17. Goren A, Ram O, Amit M et al (2006) Comparative analysis identifies exonic splicing regulatory sequences: the complex definition of enhancers and silencers. Mol Cell 22:769–781

    PubMed  CAS  Google Scholar 

  18. Wang Y, Ma M, Xiao X et al (2012) Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat Struct Mol Biol 19:1044–1052

    PubMed Central  PubMed  CAS  Google Scholar 

  19. Erkelenz S, Mueller WF, Evans MS et al (2013) Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA 19:96–102

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Witten JT, Ule J (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet 27:89–97

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Siebel CW, Fresco LD, Rio DC (1992) The mechanism of somatic inhibition of Drosophila P-element pre-mRNA splicing: multiprotein complexes at an exon pseudo-5′ splice site control U1 snRNP binding. Genes Dev 6:1386–1401

    PubMed  CAS  Google Scholar 

  22. Cote J, Dupuis S, Jiang Z et al (2001) Caspase-2 pre-mRNA alternative splicing: identification of an intronic element containing a decoy 3′ acceptor site. Proc Natl Acad Sci USA 98:938–943

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Pagani F, Buratti E, Stuani C et al (2002) A new type of mutation causes a splicing defect in ATM. Nat Genet 30:426–429

    PubMed  CAS  Google Scholar 

  24. Buratti E, Baralle FE (2004) Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol 24:10505–10514

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Shepard PJ, Hertel KJ (2008) Conserved RNA secondary structures promote alternative splicing. RNA 14:1463–1469

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Hiller M, Zhang Z, Backofen R et al (2007) Pre-mRNA secondary structures influence exon recognition. PLoS Genet 3:e204

    PubMed Central  PubMed  Google Scholar 

  27. Singh NN, Singh RN, Androphy EJ (2007) Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res 35:371–389

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Grover A, Houlden H, Baker M et al (1999) 5′ splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10. J Biol Chem 274:15134–15143

    PubMed  CAS  Google Scholar 

  29. Baraniak AP, Lasda EL, Wagner EJ et al (2003) A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements. Mol Cell Biol 23: 9327–9337

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Graveley BR (2005) Mutually exclusive splicing of the insect Dscam pre-mRNA directed by competing intronic RNA secondary structures. Cell 123:65–73

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Olson S, Blanchette M, Park J et al (2007) A regulator of Dscam mutually exclusive splicing fidelity. Nat Struct Mol Biol 14:1134–1140

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Wang X, Li G, Yang Y et al (2012) An RNA architectural locus control region involved in Dscam mutually exclusive splicing. Nat Commun 3:1255

    PubMed Central  PubMed  Google Scholar 

  33. Yang Y, Zhan L, Zhang W et al (2011) RNA secondary structure in mutually exclusive splicing. Nat Struct Mol Biol 18:159–168

    PubMed  CAS  Google Scholar 

  34. Cheah MT, Wachter A, Sudarsan N et al (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    PubMed  CAS  Google Scholar 

  35. Eperon LP, Graham IR, Griffiths AD et al (1988) Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401

    PubMed  CAS  Google Scholar 

  36. Smith CW, Nadal-Ginard B (1989) Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 56:749–758

    PubMed  CAS  Google Scholar 

  37. Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270:2411–2414

    PubMed  CAS  Google Scholar 

  38. Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71

    PubMed  CAS  Google Scholar 

  39. Burnette JM, Miyamoto-Sato E, Schaub MA et al (2005) Subdivision of large introns in Drosophila by recursive splicing at nonexonic elements. Genetics 170:661–674

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Schwartz S, Meshorer E, Ast G (2009) Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 16:990–995

    PubMed  CAS  Google Scholar 

  41. Tilgner H, Nikolaou C, Althammer S et al (2009) Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 16:996–1001

    PubMed  CAS  Google Scholar 

  42. Lavigueur A, La Branche H, Kornblihtt AR et al (1993) A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7:2405–2417

    PubMed  CAS  Google Scholar 

  43. Graveley BR, Hertel KJ, Maniatis T (1998) A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J 17:6747–6756

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Scadden ADJ, Smith CWJ (1995) Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J 14:3236–3246

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature 399:75–80

    PubMed  CAS  Google Scholar 

  46. Lev-Maor G, Sorek R, Levanon EY et al (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    PubMed Central  PubMed  Google Scholar 

  47. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206

    PubMed  CAS  Google Scholar 

  48. Shukla S, Kavak E, Gregory M et al (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479:74–79

    PubMed  CAS  Google Scholar 

  49. Kishore S, Khanna A, Zhang Z et al (2010) The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 19: 1153–1164

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311:230–232

    PubMed  CAS  Google Scholar 

  51. Park JW, Parisky K, Celotto AM et al (2004) Identification of alternative splicing regulators by RNA interference in Drosophila. Proc Natl Acad Sci USA 101:15974–15979

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Saltzman AL, Pan Q, Blencowe BJ (2011) Regulation of alternative splicing by the core spliceosomal machinery. Genes Dev 25: 373–384

    PubMed Central  PubMed  Google Scholar 

  53. O’Reilly D, Dienstbier M, Cowley SA et al (2012) Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 23:281–291

    PubMed  Google Scholar 

  54. Krainer AR, Mayeda A, Kozak D et al (1991) Functional expression of cloned human splicing factor SF2: homology to RNA-binding proteins, U1 70K, and Drosophila splicing regulators. Cell 66:383–394

    PubMed  CAS  Google Scholar 

  55. Ge H, Manley JL (1990) A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62:25–34

    PubMed  CAS  Google Scholar 

  56. Kanopka A, Muhlemann O, Akusjarvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381:535–538

    PubMed  CAS  Google Scholar 

  57. Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27

    PubMed  CAS  Google Scholar 

  58. Shepard PJ, Hertel KJ (2009) The SR protein family. Genome Biol 10:242

    PubMed Central  PubMed  Google Scholar 

  59. Zahler AM, Lane WS, Stolk JA et al (1992) SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev 6:837–847

    PubMed  CAS  Google Scholar 

  60. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    PubMed  CAS  Google Scholar 

  61. Sapra AK, Ankö M-L, Grishina I et al (2009) SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol cell 34: 179–190

    PubMed  CAS  Google Scholar 

  62. Tacke R, Manley JL (1995) The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J 14:3540–3551

    PubMed Central  PubMed  CAS  Google Scholar 

  63. Liu HX, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12:1998–2012

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Änkö M-L, Müller-McNicoll M, Brandl H et al (2012) The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol 13:R17

    PubMed Central  PubMed  Google Scholar 

  65. Graveley BR, Hertel KJ, Maniatis T (2001) The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA 7:806–818

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Shin C, Feng Y, Manley JL (2004) Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427:553–558

    PubMed  CAS  Google Scholar 

  67. Shin C, Manley JL (2002) The SR protein SRp38 represses splicing in M phase cells. Cell 111:407–417

    PubMed  CAS  Google Scholar 

  68. Feng Y, Chen M, Manley JL (2008) Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nat Struct Mol Biol 15:1040–1048

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Huelga SC, Vu AQ, Arnold JD et al (2012) Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep 1:167–178

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Boutz PL, Stoilov P, Li Q et al (2007) A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21:1636–1652

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Rossbach O, Hung LH, Schreiner S et al (2009) Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol Cell Biol 29:1442–1451

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Castle JC, Zhang C, Shah JK et al (2008) Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat Genet 40: 1416–1425

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Wang ET, Cody NA, Jog S et al (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150:710–724

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    PubMed  CAS  Google Scholar 

  76. Ray D, Kazan H, Chan ET et al (2009) Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol 27:667–670

    PubMed  CAS  Google Scholar 

  77. Barbosa-Morais NL, Irimia M, Pan Q et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593

    PubMed  CAS  Google Scholar 

  78. Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338:1593–1599

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Lopez AJ (1998) Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279–305

    PubMed  CAS  Google Scholar 

  80. Llorian M, Schwartz S, Clark TA et al (2010) Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 17:1114–1123

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Buckanovich RJ, Posner JB, Darnell RB (1993) Nova, the paraneoplastic Ri antigen, is homologous to an RNA-binding protein and is specifically expressed in the developing motor system. Neuron 11:657–672

    PubMed  CAS  Google Scholar 

  82. Calarco JA, Superina S, O’Hanlon D et al (2009) Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138:898–910

    PubMed  CAS  Google Scholar 

  83. Warzecha CC, Sato TK, Nabet B et al (2009) ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 33:591–601

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Makeyev EV, Zhang J, Carrasco MA et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Spellman R, Llorian M, Smith CW (2007) Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27:420–434

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Zheng S, Gray EE, Chawla G et al (2012) PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 15:381–388, S1

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Licatalosi DD, Yano M, Fak JJ et al (2012) Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 26:1626–1642

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Ye J, Llorian M, Cardona M et al (2013) A pathway involving HDAC5, cFLIP and caspases regulates expression of the splicing regulator Polypyrimidine Tract Binding Protein in the heart. J Cell Sci 126:1682–1691

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Anczukow O, Rosenberg AZ, Akerman M et al (2012) The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19:220–228

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Karni R, de Stanchina E, Lowe SW et al (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14:185–193

    PubMed  CAS  Google Scholar 

  91. Kalsotra A, Xiao X, Ward AJ et al (2008) A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci USA 105:20333–20338

    PubMed Central  PubMed  CAS  Google Scholar 

  92. Kalsotra A, Wang K, Li PF et al (2010) MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev 24:653–658

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Goers ES, Purcell J, Voelker RB et al (2010) MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Res 38:2467–2484

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Miller JW, Urbinati CR, Teng-Umnuay P et al (2000) Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 19: 4439–4448

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Kuyumcu-Martinez NM, Wang GS, Cooper TA (2007) Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 28:68–78

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    PubMed  CAS  Google Scholar 

  97. Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5:727–738

    PubMed  CAS  Google Scholar 

  98. Lynch KW (2007) Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol 623:161–174

    PubMed  Google Scholar 

  99. Heyd F, Lynch KW (2011) Degrade, move, regroup: signaling control of splicing proteins. Trends Biochem Sci 36:397–404

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Ellisen LW, Palmer RE, Maki RG et al (2001) Cascades of transcriptional induction during human lymphocyte activation. Eur J Cell Biol 80:321–328

    PubMed  CAS  Google Scholar 

  101. Teague TK, Hildeman D, Kedl RM et al (1999) Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc Natl Acad Sci USA 96:12691–12696

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Oberdoerffer S, Moita LF, Neems D et al (2008) Regulation of CD45 alternative splicing by heterogeneous ribonucleoprotein, hnRNPLL. Science 321:686–691

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Heyd F, Lynch KW (2010) Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell 40:126–137

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Cho S, Hoang A, Sinha R et al (2011) Interaction between the RNA binding domains of Ser-Arg splicing factor 1 and U1-70K snRNP protein determines early spliceosome assembly. Proc Natl Acad Sci USA 108:8233–8238

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Amin EM, Oltean S, Hua J et al (2011) WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20:768–780

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Zhou Z, Qiu J, Liu W et al (2012) The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell 47: 422–433

    PubMed Central  PubMed  CAS  Google Scholar 

  107. Fumagalli S, Totty NF, Hsuan JJ et al (1994) A target for Src in mitosis. Nature 368: 871–874

    PubMed  CAS  Google Scholar 

  108. Taylor SJ, Shalloway D (1994) An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 368:867–871

    PubMed  CAS  Google Scholar 

  109. Vernet C, Artzt K (1997) STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 13:479–484

    PubMed  CAS  Google Scholar 

  110. Matter N, Herrlich P, König H (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691–695

    PubMed  CAS  Google Scholar 

  111. Batsché E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13:22–29

    PubMed  Google Scholar 

  112. Cheng C, Sharp PA (2006) Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 26:362–370

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Moore MJ, Wang Q, Kennedy CJ et al (2010) An alternative splicing network links cell-cycle control to apoptosis. Cell 142:625–636

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Paronetto MP, Achsel T, Massiello A et al (2007) The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 176:929–939

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  116. Dhillon AS, Hagan S, Rath O et al (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290

    PubMed  CAS  Google Scholar 

  117. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    PubMed  CAS  Google Scholar 

  118. Paronetto MP, Venables JP, Elliott DJ et al (2003) Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene 22:8707–8715

    PubMed  CAS  Google Scholar 

  119. Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8:1351–1361

    PubMed  CAS  Google Scholar 

  120. Jamison SF, Crow A, Garcia-Blanco MA (1992) The spliceosome assembly pathway in mammalian extracts. Mol Cell Biol 12: 4279–4287

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Michaud S, Reed R (1991) An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes Dev 5:2534–2546

    PubMed  CAS  Google Scholar 

  122. Michaud S, Reed R (1993) A functional association between the 5′ and 3′ splice site is established in the earliest prespliceosome complex (E) in mammals. Genes Dev 7:1008–1020

    PubMed  CAS  Google Scholar 

  123. Sharma S, Falick AM, Black DL (2005) Polypyrimidine tract binding protein blocks the 5′ splice site-dependent assembly of U2AF and the prespliceosomal E complex. Mol Cell 19:485–496

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Wu JY, Maniatis T (1993) Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070

    PubMed  CAS  Google Scholar 

  125. Forch P, Puig O, Martinez C et al (2002) The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J 21:6882–6892

    PubMed Central  PubMed  Google Scholar 

  126. Singh R, Valcarcel J, Green MR (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173–1176

    PubMed  CAS  Google Scholar 

  127. Lim SR, Hertel KJ (2004) Commitment to splice site pairing coincides with A complex formation. Mol Cell 15:477–483

    PubMed  CAS  Google Scholar 

  128. Kotlajich MV, Crabb TL, Hertel KJ (2009) Spliceosome assembly pathways for different types of alternative splicing converge during commitment to splice site pairing in the A complex. Mol Cell Biol 29:1072–1082

    PubMed Central  PubMed  CAS  Google Scholar 

  129. Hodson MJ, Hudson AJ, Cherny D et al (2012) The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites. Nucleic Acids Res 40:6850–6862

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Yu Y, Maroney PA, Denker JA et al (2008) Dynamic regulation of alternative splicing by silencers that modulate 5′ splice site competition. Cell 135:1224–1236

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Shen H, Green MR (2004) A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol Cell 16:363–373

    PubMed  CAS  Google Scholar 

  132. Shen H, Green MR (2006) RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev 20:1755–1765

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Hoskins AA, Friedman LJ, Gallagher SS et al (2011) Ordered and dynamic assembly of single spliceosomes. Science 331:1289–1295

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Tseng CK, Cheng SC (2008) Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 320:1782–1784

    PubMed  CAS  Google Scholar 

  135. Lallena MJ, Chalmers KJ, Llamazares S et al (2002) Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell 109:285–296

    PubMed  CAS  Google Scholar 

  136. Schneider M, Will CL, Anokhina M et al (2010) Exon definition complexes contain the tri-snRNP and can be directly converted into B-like precatalytic splicing complexes. Mol Cell 38:223–235

    PubMed  CAS  Google Scholar 

  137. Bonnal S, Martinez C, Forch P et al (2008) RBM5/Luca-15/H37 regulates Fas alternative splice site pairing after exon definition. Mol Cell 32:81–95

    PubMed  CAS  Google Scholar 

  138. House AE, Lynch KW (2006) An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition. Nat Struct Mol Biol 13:937–944

    PubMed  CAS  Google Scholar 

  139. Sharma S, Kohlstaedt LA, Damianov A et al (2008) Polypyrimidine tract binding protein controls the transition from exon definition to an intron defined spliceosome. Nat Struct Mol Biol 15:183–191

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Sharma S, Maris C, Allain FH et al (2011) U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol Cell 41:579–588

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Izquierdo JM, Majos N, Bonnal S et al (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19:475–484

    PubMed  CAS  Google Scholar 

  142. Chiou N-T, Shankarling G, Lynch KW (2013) HnRNP L and HnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly. Mol Cell 49:972–982

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Motta-Mena LB, Heyd F, Lynch KW (2010) Context-dependent regulatory mechanism of the splicing factor hnRNP L. Mol Cell 37: 223–234

    PubMed Central  PubMed  CAS  Google Scholar 

  144. Lim KH, Ferraris L, Filloux ME et al (2011) Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci USA 108:11093–11098

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2:731–740

    PubMed  CAS  Google Scholar 

  146. Yokota T, Lu Q-L, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65:667–676

    PubMed  Google Scholar 

  147. Lorson CL, Hahnen E, Androphy EJ et al (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Nlend Nlend R, Meyer K, Schümperli D (2010) Repair of pre-mRNA splicing: prospects for a therapy for spinal muscular atrophy. RNA Biol 7:430–440

    PubMed  Google Scholar 

  149. Skordis LA, Dunckley MG, Yue B et al (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci USA 100:4114–4119

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10:120–125

    PubMed  CAS  Google Scholar 

  151. Singh NK, Singh NN, Androphy EJ et al (2006) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26:1333–1346

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Hua Y, Sahashi K, Hung G et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24: 1634–1644

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3: 72ra18

    PubMed Central  PubMed  Google Scholar 

  154. Black DL (1991) Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non-neuronal cells? Genes Dev 5:389–402

    PubMed  CAS  Google Scholar 

  155. Underwood JG, Boutz PL, Dougherty JD et al (2005) Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol 25:10005–10016

    PubMed Central  PubMed  CAS  Google Scholar 

  156. Matlin AJ, Southby J, Gooding C et al (2007) Repression of alpha-actinin SM exon splicing by assisted binding of PTB to the polypyrimidine tract. RNA 13:1214–1223

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ lab is supported by grants from the Wellcome Trust (092900) and the Biotechnology and Biological Sciences Research Council (BB/H004203/1 and BB/J0014567/1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coelho, M.B., Smith, C.W.J. (2014). Regulation of Alternative Pre-mRNA Splicing. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics