Skip to main content

Alternative Pre-mRNA Splicing

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

Alternative pre-mRNA splicing is an integral part of gene regulation in eukaryotes. Here we provide a basic overview of the various types of alternative splicing, as well as the functional role, highlighting how alternative splicing varies across phylogeny. Regulated alternative splicing can affect protein function and ultimately impact biological outcomes. We examine the possibility that portions of alternatively spliced transcripts are the result of stochastic processes rather than regulated. We discuss the implications of misregulated alternative splicing and explore of the role of alternative splicing in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGuire AM, Pearson MD, Neafsey DE et al (2008) Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol 9:R50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Wang B, Guo G, Wang C et al (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Wang B-B, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A 103:7175–7180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Kalyna M, Simpson CG, Syed NH et al (2012) Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res 40:2454–2469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Gan X, Stegle O, Behr J et al (2011) Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477:419–423

    Article  PubMed  CAS  Google Scholar 

  7. Ramani AK, Calarco JA, Pan Q et al (2011) Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res 21:342–348

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Yook K, Harris TW, Bieri T et al (2012) WormBase 2012: more genomes, more data, new website. Nucleic Acids Res 40:735–741

    Article  CAS  Google Scholar 

  9. Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Graveley BR, Brooks AN, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Venables JP, Tazi J, Juge F (2012) Regulated functional alternative splicing in Drosophila. Nucleic Acids Res 40:1–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Salz HK (2011) Sex determination in insects: a binary decision based on alternative splicing. Curr Opin Genet Dev 21:395–400

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Katz Y, Wang ET, Airoldi EM et al (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Frankish A, Mudge JM, Thomas M et al (2012) The importance of identifying alternative splicing in vertebrate genome annotation. Database 2012:bas014. doi:10.1093/database/bas014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Pan Q, Shai O, Lee JL et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  16. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Yeo G, Holste D, Kreiman G et al (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74

    Article  PubMed Central  PubMed  Google Scholar 

  18. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Pickrell JK, Pai AA, Gilad Y et al (2010) Noisy splicing drives mRNA isoform diversity in human cells. PLoS Genet 6:e1001236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Sugnet CW, Kent WJ, Ares M Jr et al (2004) Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac Symp Biocomput 9:66–77

    Google Scholar 

  21. Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71

    Article  PubMed  CAS  Google Scholar 

  22. Merkin J, Russell C, Chen P et al (2012) Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–1599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Barbosa-Morais NL, Irimia M, Pan Q et al (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–1593

    Article  PubMed  CAS  Google Scholar 

  24. Tress ML, Martelli PL, Frankish A et al (2007) The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci U S A 104:5495–5500

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Tress ML, Bodenmiller B, Aebersold R et al (2008) Proteomics studies confirm the presence of alternative protein isoforms on a large scale. Genome Biol 9:R162

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Kelemen O, Convertini P, Zhang Z et al (2012) Function of alternative splicing. Gene 514:1–30

    Article  PubMed  CAS  Google Scholar 

  27. Gabut M, Samavarchi-Tehrani P, Wang X et al (2011) An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 147:132–146

    Article  PubMed  CAS  Google Scholar 

  28. Salomonis N, Schlieve CR, Pereira L et al (2010) Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci U S A 107:10514–10519

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sunmonu NA, Li K, Li JYH (2011) Numerous isoforms of Fgf8 reflect its multiple roles in the developing brain. J Cell Physiol 226:1722–1726

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Fletcher RB, Baker JC, Harland RM (2006) FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133:1703–1714

    Article  PubMed  CAS  Google Scholar 

  31. Guo Q, Li JYH (2007) Distinct functions of the major Fgf8 spliceform, Fgf8b, before and during mouse gastrulation. Development 134:2251–2260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Itoh N (2007) The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30:1819–1825

    Article  PubMed  CAS  Google Scholar 

  33. Lewis BP, Green RE, Brenner SE (2002) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100:189–192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Pan Q, Saltzman AL, Kim YK et al (2006) Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 20:153–158

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Baek D, Green P (2005) Sequence conservation, relative isoform frequencies, and nonsense-mediated decay in evolutionarily conserved alternative splicing. Proc Natl Acad Sci U S A 102:12813–12818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Lareau LF, Brooks AN, Soergel D et al (2007) The coupling of alternative splicing and nonsense mediated mRNA decay. In: Blencowe B, Graveley B (eds) Alternative splicing in the postgenomic era. Landes Biosciences, Austin, TX, pp 190–211

    Chapter  Google Scholar 

  37. Hyvönen MT, Uimari A, Keinänen TA et al (2006) Polyamine-regulated unproductive splicing and translation of spermidine/spermine N1-acetyltransferase. RNA 12:1569–1582

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Wang G-S, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    Article  PubMed  CAS  Google Scholar 

  39. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64:7647–7654

    Article  PubMed  CAS  Google Scholar 

  40. Biamonti G, Bonomi S, Gallo S et al (2012) Making alternative splicing decisions during epithelial-to-mesenchymal transition (EMT). Cell Mol Life Sci 69:2515–2526

    Article  PubMed  CAS  Google Scholar 

  41. Singh RK, Cooper TA (2012) Pre-mRNA splicing in disease and therapeutics. Trends Mol Med 18:472–482

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Mills JD, Janitz M (2012) Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol Aging 33:11–24

    Article  CAS  Google Scholar 

  43. Poulos MG, Batra R, Charizanis K (2011) Developments in RNA splicing and disease. Cold Spring Harb Perspect Biol 3:a000778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Klamt B, Koziell A, Poulat F et al (1998) Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/-KTS splice isoforms. Hum Mol Genet 7:709–714

    Article  PubMed  CAS  Google Scholar 

  45. Hammes A, Guo JK, Lutsch G et al (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  PubMed  CAS  Google Scholar 

  46. Lee SB, Huang K, Palmer R et al (1999) The Wilms tumor suppressor WT1 encodes a transcriptional activator of amphiregulin. Cell 98:663–673

    Article  PubMed  CAS  Google Scholar 

  47. Reynolds PA, Smolen GA, Palmer RE et al (2003) Identification of a DNA-binding site and transcriptional target for the EWS-WT1(+KTS) oncoprotein. Genes Dev 17:2094–2107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Morrison AA, Viney RL, Ladomery MR (2008) The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta 1785:55–62

    PubMed  CAS  Google Scholar 

  49. Huff V (2011) Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 11:111–121

    Article  PubMed  CAS  Google Scholar 

  50. Chau Y-Y, Hastie ND (2012) The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet 28:515–524

    Article  PubMed  CAS  Google Scholar 

  51. Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5:727–738

    Article  PubMed  CAS  Google Scholar 

  52. Day JW, Ranum LPW (2005) RNA pathogenesis of the myotonic dystrophies. Neuromuscul Disord 15:5–16

    Article  PubMed  Google Scholar 

  53. Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15:162–169

    Article  CAS  Google Scholar 

  54. Ranum LPW, Day JW (2004) Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 74:793–804

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Mahadevan MS (2011) Myotonic muscular dystrophy, RNA toxicity, and the brain: trouble making the connection? Cell Stem Cell 8:349–350

    Article  PubMed  CAS  Google Scholar 

  57. Wang G-S, Kearney DL, De Biasi M et al (2007) Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest 117:2802–2811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Du H, Cline MS, Osborne RJ et al (2010) Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol 17:187–193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Wang ET, Cody NAL, Jog S et al (2012) Transcriptome-wide regulation of pre-mRNA splicing and mRNA localization by muscleblind proteins. Cell 150:710–724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Paul S, Dansithong W, Kim D et al (2006) Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J 25:4271–4283

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Koshelev M, Sarma S, Price RE et al (2010) Heart-specific overexpression of CUGBP1 reproduces functional and molecular abnormalities of myotonic dystrophy type 1. Hum Mol Genet 19:1066–1075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Kino Y, Washizu C, Oma Y et al (2009) MBNL and CELF proteins regulate alternative splicing of the skeletal muscle chloride channel CLCN1. Nucleic Acids Res 37:6477–6490

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Mankodi A, Takahashi MP, Jiang H et al (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    Article  PubMed  CAS  Google Scholar 

  64. Darnell RB, Posner JB (2003) Paraneoplastic syndromes involving the nervous system. N Engl J Med 349:1543–1554

    Article  PubMed  CAS  Google Scholar 

  65. Ruggiu M, Herbst R, Kim N et al (2009) Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. Proc Natl Acad Sci U S A 106:3513–3518

    Article  PubMed Central  PubMed  Google Scholar 

  66. Ule J, Stefani G, Mele A et al (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–586

    Article  PubMed  CAS  Google Scholar 

  67. Licatalosi DD, Mele A, Fak JJ et al (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Research in the Berglund laboratory is supported by NIH (AR059833) and the Myotonic Dystrophy Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wagner, S.D., Berglund, J.A. (2014). Alternative Pre-mRNA Splicing. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics