Skip to main content

Complementation of U4 snRNA in S. cerevisiae Splicing Extracts for Biochemical Studies of snRNP Assembly and Function

  • Protocol
  • First Online:
Spliceosomal Pre-mRNA Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1126))

Abstract

Pre-messenger RNA splicing is a surprisingly complex and dynamic process, the details of which remain largely unknown. One important method for studying splicing involves the replacement of endogenous splicing components with their synthetic counterparts. This enables changes in protein or nucleic acid sequence to be tested for functional effects, as well as the introduction of chemical moieties such as cross-linking groups and fluorescent dyes. To introduce the modified component, the endogenous one must be removed and a method found to reconstitute the active splicing machinery. In extracts prepared from S. cerevisiae, reconstitution has been accomplished with the small, nuclear RNAs U6, U2, and U5.

We describe a comparable method to reconstitute active U4 small, nuclear RNA (snRNA) into a splicing extract. In order to remove the endogenous U4 it is necessary to target it for oligo-directed RNase H degradation while active splicing is under way, i.e., in the presence of a splicing transcript and ATP. This allows complete degradation of endogenous U4 and subsequent replacement with an exogenous version. In contrast to the procedures described for depletion of U6, U2, or U5 snRNAs, depletion of U4 requires concurrent active splicing. The ability to reconstitute U4 in yeast extract allows a variety of structural and functional studies to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437

    Article  PubMed  CAS  Google Scholar 

  2. Wang G-S, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    Article  PubMed  CAS  Google Scholar 

  3. López-Bigas N, Audit B, Ouzounis C et al (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579:1900–1903

    Article  PubMed  CAS  Google Scholar 

  4. Will CL, Lührmann R (2011) Spliceosome structure and function. Cold Spring Harbor Perspect Biol 3:1–23

    Article  CAS  Google Scholar 

  5. Hayduk AJ, Stark MR, Rader SD (2012) In vitro reconstitution of yeast splicing with U4 snRNA reveals multiple roles for the 3′ stem-loop. RNA 18:1075–1090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Edery P, Marcaillou C, Sahbatou M et al (2011) Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science 332:240–243

    Article  PubMed  CAS  Google Scholar 

  7. He H, Liyanarachchi S, Akagi K et al (2011) Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science 332:238–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. McPheeters DS, Fabrizio P, Abelson J (1989) In vitro reconstitution of functional yeast U2 snRNPs. Genes Dev 3:2124–2136

    Article  PubMed  CAS  Google Scholar 

  9. Fabrizio P, McPheeters DS, Abelson J (1989) In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev 3:2137–2150

    Article  PubMed  CAS  Google Scholar 

  10. O'Keefe RT, Norman C, Newman AJ (1996) The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell 86:679–689

    Article  PubMed  Google Scholar 

  11. Pan ZQ, Ge H, Fu XY et al (1989) Oligonucleotide-targeted degradation of U1 and U2 snRNAs reveals differential interactions of simian virus 40 pre-mRNAs with snRNPs. Nucleic Acids Res 17:6553–6568

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Pan ZQ, Prives C (1988) Assembly of functional U1 and U2 human-amphibian hybrid snRNPs in Xenopus laevis oocytes. Science 241:1328–1331

    Article  PubMed  CAS  Google Scholar 

  13. Hamm J, Dathan NA, Mattaj IW (1989) Functional analysis of mutant Xenopus U2 snRNAs. Cell 59:159–169

    Article  PubMed  CAS  Google Scholar 

  14. Hamm J, Dathan NA, Scherly D et al (1990) Multiple domains of U1 snRNA, including U1 specific protein binding sites, are required for splicing. EMBO J 9:1237–1244

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Wersig C, Bindereif A (1992) Reconstitution of functional mammalian U4 small nuclear ribonucleoprotein: Sm protein binding is not essential for splicing in vitro. Mol Cell Biol 12:1460–1468

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Wolff T, Bindereif A (1992) Reconstituted mammalian U4/U6 snRNP complements splicing: a mutational analysis. EMBO J 11:345–359

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Ségault V, Will CL, Sproat BS, Lührmann R (1995) In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J 14:4010–4021

    PubMed Central  PubMed  Google Scholar 

  18. Will CL, Rümpler S, Klein Gunnewiek J et al (1996) In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucleic Acids Res 24:4614–4623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Black DL, Steitz JA (1986) Pre-mRNA splicing in vitro requires intact U4/U6 small nuclear ribonucleoprotein. Cell 46:697–704

    Article  PubMed  CAS  Google Scholar 

  20. Ansari A, Schwer B (1995) SLU7 and a novel activity, SSF1, act during the PRP16-dependent step of yeast pre-mRNA splicing. EMBO J 14:4001–4009

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Vijayraghavan U, Parker R, Tamm J et al (1986) Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J 5:1683–1695

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Ghetti A, Company M, Abelson J (1995) Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA 1:132–145

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grant 298521 and UNBC Office of Research awards to SDR.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stark, M.R., Rader, S.D. (2014). Complementation of U4 snRNA in S. cerevisiae Splicing Extracts for Biochemical Studies of snRNP Assembly and Function. In: Hertel, K. (eds) Spliceosomal Pre-mRNA Splicing. Methods in Molecular Biology, vol 1126. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-980-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-980-2_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-979-6

  • Online ISBN: 978-1-62703-980-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics